A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation

被引:32
|
作者
Durmaz, Muhammet Enes [1 ]
Amiraliyev, Gabil M. [2 ]
机构
[1] Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, Dept Math, TR-24100 Erzincan, Turkey
[2] Erzincan Binali Yildirim Univ, Dept Math, Fac Arts & Sci, TR-24100 Erzincan, Turkey
关键词
Fredholm integro-differential equation; singular perturbation; finite difference; Shishkin mesh; uniform convergence; 65L11; 65L12; 65L20; 65R20; 45J05; GALERKIN METHOD;
D O I
10.1007/s00009-020-01693-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with a fitted second-order homogeneous (non-hybrid) type difference scheme for solving the singularly perturbed linear second-order Fredholm integro-differential equation. The numerical method represents the exponentially fitted scheme on the Shishkin mesh. Numerical example is presented to demonstrate efficiency of proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition
    Durmaz, Muhammet Enes
    Amiraliyev, Gabil M.
    Kudu, Mustafa
    TURKISH JOURNAL OF MATHEMATICS, 2021, : 207 - 224
  • [32] A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation
    Li-Bin Liu
    Yige Liao
    Guangqing Long
    Computational and Applied Mathematics, 2023, 42
  • [33] A finite-difference method for a singularly perturbed delay integro-differential equation
    Kudu, Mustafa
    Amirali, Ilhame
    Amiraliyev, Gabil M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 308 : 379 - 390
  • [34] The Uniform Convergence of a DG Method for a Singularly Perturbed Volterra Integro-Differential Equation
    Xia Tao
    Ziqing Xie
    Acta Mathematica Scientia, 2023, 43 : 2159 - 2178
  • [35] The Uniform Convergence of a DG Method for a Singularly Perturbed Volterra Integro-Differential Equation
    Tao, Xia
    Xie, Ziqing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2159 - 2178
  • [36] THE UNIFORM CONVERGENCE OF A DG METHOD FOR A SINGULARLY PERTURBED VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
    陶霞
    谢资清
    ActaMathematicaScientia, 2023, 43 (05) : 2159 - 2178
  • [37] Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay
    Yapman, Omer
    Amiraliyev, Gabil M.
    Amirali, Ilhame
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 355 : 301 - 309
  • [38] On the numerical solution of a parabolic Fredholm integro-differential equation by the RBF method
    Borachok, Ihor
    Chapko, Roman
    Palianytsia, Oksana
    RESULTS IN APPLIED MATHEMATICS, 2025, 26
  • [39] Analysis of a nonlinear singularly perturbed Volterra integro-differential equation
    Sumit, Sunil
    Kumar, Sunil
    Vigo-Aguiar, Jesus
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [40] The Cauchy problem for a singularly perturbed Volterra integro-differential equation
    Nefedov N.N.
    Nikitin A.G.
    Urazgil'Dina T.A.
    Computational Mathematics and Mathematical Physics, 2006, 46 (5) : 768 - 775