Spin-Crossover Properties of an Iron(II) Coordination Nanohoop

被引:20
|
作者
Ojea, Maria Jose Heras [1 ]
Van Raden, Jeff M. [2 ,3 ]
Louie, Shayan [2 ,3 ]
Collins, Richard [1 ]
Pividori, Daniel [4 ]
Cirera, Jordi [5 ,6 ]
Meyer, Karsten [4 ]
Jasti, Ramesh [2 ,3 ]
Layfield, Richard A. [1 ]
机构
[1] Univ Sussex, Dept Chem, Brighton BN1 9QJ, E Sussex, England
[2] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[3] Univ Oregon, Mat Sci Inst, Eugene, OR 97403 USA
[4] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Chem & Pharm, Inorgan Chem, Egerlandstr 1, D-91058 Erlangen, Germany
[5] Univ Barcelona, Dept Quim Inorgan & Organ, Diagonal 645, Barcelona 08028, Spain
[6] Univ Barcelona, Inst Recerca Quim Teor & Computac, Diagonal 645, Barcelona 08028, Spain
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
iron; magnetic properties; molecular materials; nanohoop ligand; spin crossover; MAGNETIC-PROPERTIES; TRANSITION; COMPLEXES; TEMPERATURE; SERIES;
D O I
10.1002/anie.202013374
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Addition of the bipyridyl-embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2B(pyz)(2)}] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2B(pyz)(2)}(2)] (1). The molecular structure of 1 shows that the nanohoop ligand contains a non-planar bipy unit. Magnetic susceptibility measurements indicate spin-crossover (SCO) behaviour with a T-1/2 of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2B(pyz)(2)}(2)] (2), which contains a conventional bipy ligand. A computational study of 1 and 2 reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop.
引用
收藏
页码:3515 / 3518
页数:4
相关论文
共 50 条
  • [21] Solution NMR studies of iron(II) spin-crossover complexes
    Weber, Birgit
    Walker, F. Ann
    INORGANIC CHEMISTRY, 2007, 46 (16) : 6794 - 6803
  • [22] Spin-Crossover Phenomenon in a Pentanuclear Iron(II) Cluster Helicate
    Yan, Zheng
    Liu, Wei
    Peng, Yuan-Yuan
    Chen, Yan-Cong
    Li, Quan-Wen
    Ni, Zhao-Ping
    Tong, Ming-Liang
    INORGANIC CHEMISTRY, 2016, 55 (10) : 4891 - 4896
  • [23] Solvent Effects on the Structural Packing and Spin-Crossover Properties of a Mononuclear Iron(II) Complex
    Sun, Xiao-Peng
    Wei, Rong-Jia
    Yao, Zi-Shuo
    Tao, Jun
    CRYSTAL GROWTH & DESIGN, 2018, 18 (11) : 6853 - 6862
  • [24] A stacking spin-crossover iron(II) compound with a large hysteresis
    Zhong, ZJ
    Tao, JQ
    Yu, Z
    Dun, CY
    Liu, YJ
    You, XZ
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1998, (03): : 327 - 328
  • [25] Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate
    Kosaka, Wataru
    Nomura, Kiyoshi
    Hashimoto, Kazuhito
    Ohkoshi, Shin-Ichi
    Journal of the American Chemical Society, 2005, 127 (24): : 8590 - 8591
  • [26] Successive redox modulation in an iron(ii) spin-crossover framework†
    Lyu, Bang-Heng
    Ruan, Ze-Yu
    Cui, Wen
    Wu, Si-Guo
    Ni, Zhao-Ping
    Tong, Ming-Liang
    INORGANIC CHEMISTRY FRONTIERS, 2023,
  • [27] Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals
    Ortega-Villar, Norma
    Carmen Munoz, M.
    Real, Jose A.
    MAGNETOCHEMISTRY, 2016, 2 (01)
  • [28] A stacking spin-crossover iron(II) compound with a large hysteresis
    Zhuang, Jin Zhong
    Tao, J.-Q.
    Yu, Z.
    Dun, C.-Y.
    Journal of the Chemical Society.Dalton Transactions, (03):
  • [29] Successive redox modulation in an iron(ii) spin-crossover framework
    Lyu, Bang-Heng
    Ruan, Ze-Yu
    Cui, Wen
    Wu, Si-Guo
    Ni, Zhao-Ping
    Tong, Ming-Liang
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (12) : 3577 - 3583
  • [30] Advances in polynuclear iron(II), iron(III) and cobalt(II) spin-crossover compounds
    Murray, Keith S.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2008, 20 (20) : 3101 - 3121