In Situ Engineering of the Electrode-Electrolyte Interface for Stabilized Overlithiated Cathodes

被引:27
|
作者
Evans, Tyler [1 ,2 ]
Piper, Daniela Molina [2 ]
Sun, Huaxing [3 ]
Porcelli, Timothy [3 ]
Kim, Seul Cham [4 ]
Han, Sang Sub [4 ]
Choi, Yong Seok [4 ]
Tian, Chixia [5 ]
Nordlund, Dennis [6 ]
Doeff, Marca M. [5 ]
Ban, Chunmei [7 ]
Cho, Sung-Jin [8 ]
Oh, Kyu Hwan [4 ]
Lee, Se-Hee [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] SiILion Inc, Broomfield, CO 80020 USA
[3] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[4] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[5] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[6] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[7] Natl Renewable Energy Lab, Ctr Chem & Mat Sci, Golden, CO 80401 USA
[8] North Carolina A&T State Univ, Joint Sch Nanosci & Nanoengn, Greensboro, NC 27411 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; FLUOROETHYLENE CARBONATE; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCES; OXYGEN LOSS; MECHANISM; LI2MNO3; MN; NI; SPECTROSCOPY;
D O I
10.1002/adma.201604549
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The first-ever demonstration of stabilized Si/lithium-manganese-rich full cells, capable of retaining >90% energy over early cycling and >90% capacity over more than 750 cycles at the 1C rate (100% depth-of-discharge), is made through the utilization of a modified ionic-liquid electrolyte capable of forming a favorable cathode-electrolyte interface. [GRAPHICS] .
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Probing the Electrode-Electrolyte Interface with In-Operando Neutron Scattering
    Bridges, Craig
    Jafta, Charl
    Sun, Xiaoguang
    Parans, Mariappan
    Paranthaman
    Heller, William
    Dai, Sheng
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : A395 - A395
  • [42] Insights into electrode-electrolyte interfaces by in situ scanning tunnelling microscopy
    Heubach, Maren-Kathrin
    Mattausch, Yannick
    Jacob, Timo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 48
  • [43] Non linear fractal impedance model of an electrode-electrolyte interface
    Ruiz, G
    Felice, CJ
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 2315 - 2318
  • [44] INFLUENCE OF ZEOLITE AS MEDIUM ON THE POLYMERIZATION OF ANILINE AT THE ELECTRODE-ELECTROLYTE INTERFACE
    PHANI, KLN
    PITCHUMANI, S
    RAVICHANDRAN, S
    LANGMUIR, 1993, 9 (09) : 2455 - 2459
  • [45] Relaxation processes due to the electrode-electrolyte interface in ionic solutions
    Sanabria, Hugo
    Miller, John H., Jr.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [46] Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode
    Nasrollaholhosseini, Seyed Hadi
    Mercier, Jason
    Fischer, Godi
    Besio, Walter G.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (10) : 2897 - 2905
  • [47] Microscopic Imaging of Electrical Current Distribution at the Electrode-Electrolyte Interface
    Jia, Wenyan
    Wu, Jiamin
    Gao, Di
    Sun, Mingui
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4252 - 4255
  • [48] THE LINEAR AND NONLINEAR ELECTRICAL-PROPERTIES OF THE ELECTRODE-ELECTROLYTE INTERFACE
    MCADAMS, ET
    LACKERMEIER, A
    MCLAUGHLIN, JA
    MACKEN, D
    JOSSINET, J
    BIOSENSORS & BIOELECTRONICS, 1995, 10 (1-2): : 67 - 74
  • [49] Evolution of the electrode-electrolyte interface in a lithium-polymer battery
    Teyssot, A
    Rosso, M
    Bouchet, R
    Lascaud, S
    SOLID STATE IONICS, 2006, 177 (1-2) : 141 - 143
  • [50] Regulated Ion-Conductive Electrode-Electrolyte Interface by In Situ Gelation for Stable Zinc Metal Anode
    Meng, Xinyu
    Zhou, Shuang
    Li, Jianwen
    Chen, Yining
    Lin, Shangyong
    Han, Chao
    Pan, Anqiang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (06)