Reconstructing rational stable motivic homotopy theory

被引:10
|
作者
Garkusha, Grigory [1 ]
机构
[1] Swansea Univ, Dept Math, Fabian Way, Swansea SA1 8EN, W Glam, Wales
关键词
motivic homotopy theory; generalized correspondences; triangulated categories of motives;
D O I
10.1112/S0010437X19007425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a recent computation of the rational minus part of S H(k) by Ananyevskiy, Levine and Panin, a theorem of Cisinski and Deglise and a version of the Rondigs and Ostvar theorem, rational stable motivic homotopy theory over an infinite perfect field of characteristic different from 2 is recovered in this paper from finite Milnor Witt correspondences in the sense of Calmes and Fasel.
引用
收藏
页码:1424 / 1443
页数:20
相关论文
共 50 条
  • [31] MODEL TOPOI AND MOTIVIC HOMOTOPY THEORY
    Raptis, Georgios
    Strunk, Florian
    DOCUMENTA MATHEMATICA, 2018, 23 : 1757 - 1797
  • [32] A primer for unstable motivic homotopy theory
    Antieau, Benjamin
    Elmanto, Elden
    SURVEYS ON RECENT DEVELOPMENTS IN ALGEBRAIC GEOMETRY, 2017, 95 : 305 - 370
  • [33] C2-equivariant stable homotopy from real motivic stable homotopy
    Behrens, Mark
    Shah, Jay
    ANNALS OF K-THEORY, 2020, 5 (03) : 411 - 464
  • [34] Dimensional homotopy t-structures in motivic homotopy theory
    Bondarko, Mikhail
    Deglise, Frederic
    ADVANCES IN MATHEMATICS, 2017, 311 : 91 - 189
  • [35] Rational S1-equivariant stable homotopy theory
    Greenlees, JPC
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 138 (661) : 1 - +
  • [36] The six operations in equivariant motivic homotopy theory
    Hoyois, Marc
    ADVANCES IN MATHEMATICS, 2017, 305 : 197 - 279
  • [37] A road map of motivic homotopy and homology theory
    Weibel, C
    AXIOMATIC, ENRICHED AND MOTIVIC HOMOTOPY THEORY, 2004, 131 : 385 - 392
  • [38] Motivic homotopy theory of group scheme actions
    Heller, Jeremiah
    Krishna, Amalendu
    Ostvaer, Paul Arne
    JOURNAL OF TOPOLOGY, 2015, 8 (04) : 1202 - 1236
  • [39] RATIONAL HOMOTOPY THEORY
    QUILLEN, D
    ANNALS OF MATHEMATICS, 1969, 90 (02) : 205 - &
  • [40] Fibrewise stable rational homotopy
    Felix, Yves
    Murillo, Aniceto
    Tanre, Daniel
    JOURNAL OF TOPOLOGY, 2010, 3 (04) : 743 - 758