Stabilized finite element formulation for incompressible flow on distorted meshes

被引:18
|
作者
Foerster, Ch. [1 ]
Wall, W. A. [1 ]
Ramm, E. [2 ]
机构
[1] Tech Univ Munich, Chair Computat Mech, D-85747 Garching, Germany
[2] Univ Stuttgart, Inst Struct Mech, D-70550 Stuttgart, Germany
关键词
stabilized finite elements; incompressible flow; distorted meshes; ALE methods; finite element methods; Petrov-Galerkin; STOKES PROBLEM; PARAMETERS; EQUATIONS; BUBBLES;
D O I
10.1002/fld.1923
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Flow computations frequently require unfavourably meshes, as for example highly stretched elements in regions of boundary layers or distorted elements in deforming arbitrary Lagrangian Eulerian meshes. Thus, the performance of a flow solver on such meshes is of great interest. The behaviour of finite elements with residual-based stabilization for incompressible Newtonian flow on distorted meshes is considered here. We investigate the influence of the stabilization terms on the results obtained on distorted meshes by a number of numerical studies. The effect of different element length definitions within the elemental stabilization parameter is considered. Further, different variants of residual-based stabilization are compared indicating that dropping the second derivatives from the stabilization operator, i.e. using a streamline upwind Petrov-Galerkin type of formulation yields better results in a variety of cases. A comparison of the performance of linear and quadratic elements reveals further that the inconsistency of linear elements equipped with residual-based stabilization introduces significant errors on distorted meshes, while quadratic elements are almost unaffected by moderate mesh distortion. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1103 / 1126
页数:24
相关论文
共 50 条