Estimates for the first and second derivatives of the Stieltjes polynomials

被引:3
|
作者
Jung, HS [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Div Appl Math, Taejon 305701, South Korea
关键词
Stieltjes polynomials; ultraspherical polynomials; asymptotic differential relations;
D O I
10.1016/j.jat.2004.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w(lambda)(x) := (1 - x(2))(lambda-1/2) and P-n((lambda)) be the ultraspherical polynomials with respect to w(lambda)(x). Then we denote E-n+1((lambda)) the Stieltjes polynomials with respect to w(lambda)(x) satisfying [GRAPHICS] In this paper, we give estimates for the first and second derivatives of the Stieltjes polynomials E-n+1((lambda)) and the product E-n+1((lambda)) P-n((lambda)) by obtaining the asymptotic differential relations. Moreover, using these differential relations we estimate the second derivatives of E-n+1((lambda)) (x) and E-n+1((lambda)) (x) P-n((lambda)) (x) at the zeros of E-n+1((lambda)) (x) and the product E-n+1((lambda)) (x)P-n((lambda)) (x), respectively. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 177
页数:23
相关论文
共 50 条
  • [41] Powers Sums of the First and Second Kinds of Chebyshev Polynomials
    Kilic, Emrah
    Koparal, Sibel
    Omur, Nese
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 425 - 435
  • [42] Powers Sums of the First and Second Kinds of Chebyshev Polynomials
    Emrah Kılıç
    Sibel Koparal
    Neşe Ömür
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 425 - 435
  • [43] TRUNCATION ERROR ESTIMATES FOR STIELTJES FRACTIONS
    HENRICI, P
    PFLUGER, P
    NUMERISCHE MATHEMATIK, 1966, 9 (02) : 120 - &
  • [44] A STIELTJES ALGORITHM FOR GENERATING MULTIVARIATE ORTHOGONAL POLYNOMIALS
    Liu, Zexin
    Narayandagger, Akil
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : A1125 - A1147
  • [45] Expansions in products of Heine-Stieltjes polynomials
    Volkmer, H
    CONSTRUCTIVE APPROXIMATION, 1999, 15 (04) : 467 - 480
  • [46] Toda chain, Stieltjes function, and orthogonal polynomials
    Peherstorfer, F.
    Spiridonov, V. P.
    Zhedanov, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (01) : 505 - 528
  • [47] GLOBAL ASYMPTOTICS OF STIELTJES-WIGERT POLYNOMIALS
    Li, Y. T.
    Wong, R.
    ANALYSIS AND APPLICATIONS, 2013, 11 (05)
  • [48] Estimates of Functionals by the Second Modulus of Continuity of Even Derivatives
    Vinogradov O.L.
    Zhuk V.V.
    Journal of Mathematical Sciences, 2014, 202 (4) : 526 - 540
  • [49] ESTIMATES BY POLYNOMIALS
    ARON, RM
    CHOI, YS
    LLAVONA, JG
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 52 (03) : 475 - 486
  • [50] ON STIELTJES POLYNOMIALS AND GAUSS-KRONROD QUADRATURE
    PEHERSTORFER, F
    MATHEMATICS OF COMPUTATION, 1990, 55 (192) : 649 - 664