EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

被引:68
|
作者
Feng, Lin [1 ]
Cheng, Cheng [1 ]
Zhao, Mingyan [1 ]
Deng, Huiyuan [1 ]
Zhang, Yong [2 ,3 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian 116024, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
[3] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116081, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Emotion recognition; Feature extraction; Brain modeling; Bidirectional control; Data mining; Convolutional neural networks; Attention-enhanced bi-directional long short-term memory; biological topology; electroencephalogram; emotion recognition; spatial-graph convolutional network; BIDIRECTIONAL LSTM; NETWORKS;
D O I
10.1109/JBHI.2022.3198688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
引用
收藏
页码:5406 / 5417
页数:12
相关论文
共 50 条
  • [41] EEG-Based Emotion Recognition Using Regularized Graph Neural Networks
    Zhong, Peixiang
    Wang, Di
    Miao, Chunyan
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1290 - 1301
  • [42] Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
    Shi, Jiaqi
    Liu, Chaoran
    Ishi, Carlos Toshinori
    Ishiguro, Hiroshi
    SENSORS, 2021, 21 (01) : 1 - 16
  • [43] Skeleton-based emotion recognition based on two-stream self-attention enhanced spatial-temporal graph convolutional network
    Shi, Jiaqi
    Liu, Chaoran
    Ishi, Carlos Toshinori
    Ishiguro, Hiroshi
    Sensors (Switzerland), 2021, 21 (01): : 1 - 16
  • [44] Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting
    Feng, Jun
    Sha, Haichao
    Ding, Yukai
    Yan, Le
    Yu, Zhangheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [45] Spatial-Temporal Convolutional Attention Network for Action Recognition
    Luo, Huilan
    Chen, Han
    Computer Engineering and Applications, 2023, 59 (09): : 150 - 158
  • [46] Attention module-based spatial-temporal graph convolutional networks for skeleton-based action recognition
    Kong, Yinghui
    Li, Li
    Zhang, Ke
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [47] Scene Recognition Model in Underground Mines Based on CNN-LSTM and Spatial-Temporal Attention Mechanism
    Zheng, Tianwei
    Liu, Chi
    Liu, Beizhan
    Wang, Mei
    Li, Yuancheng
    Wang, Pai
    Qin, Xuebin
    Guo, Yuan
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 513 - 516
  • [48] Attention-based Spatio-Temporal Graphic LSTM for EEG Emotion Recognition
    Li, Xiaoxu
    Zheng, Wenming
    Zong, Yuan
    Chang, Hongli
    Lu, Cheng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [49] EEG-Based Emotion Recognition by Using Convolutional Echo-State Network
    Chao H.
    Ma Q.
    Liu Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2022, 45 (02): : 36 - 43
  • [50] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929