ON PROJECTION REFLECTION METHOD IN HILBERT SPACES

被引:0
|
作者
Matsushita, Shin-Ya [1 ]
Xu, Li [1 ]
机构
[1] Akita Prefectural Univ, Dept Elect & Informat Syst, Akita, Japan
关键词
ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite convergence of a variant of a projection reflection method for computing a point in the intersection of a closed convex set and an obtuse cone in a Hilbert space. We present a variant of the projection reflection method, and prove that the proposed variant converges to a solution to the problem in a finite number of iterations under certain assumptions.
引用
收藏
页码:2221 / 2226
页数:6
相关论文
共 50 条
  • [31] Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces
    Christian Kanzow
    Yekini Shehu
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [32] A MONOTONE PROJECTION METHOD FOR VARIATIONAL INEQUALITIES AND FIXED POINTS OF A STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES
    Shi, Jinwei
    Zheng, Yaqin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (12) : 2733 - 2741
  • [33] Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces
    Kanzow, Christian
    Shehu, Yekini
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [34] ANGULAR-MOMENTUM PROJECTION IN 2-CENTER MODEL BY PROJECTION OF HILBERT SPACES
    SELIGMAN, TH
    ZAHN, W
    HELVETICA PHYSICA ACTA, 1976, 49 (02): : 217 - 226
  • [35] ON THE STRONG CONVERGENCE OF A PROJECTION-BASED ALGORITHM IN HILBERT SPACES
    Liu, Liya
    Qin, Xiaolong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (01): : 104 - 117
  • [36] STRONG CONVERGENCE OF THE GRADIENT-PROJECTION ALGORITHM IN HILBERT SPACES
    Cui, Huanhuan
    Wang, Fenghui
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2013, 14 (02) : 245 - 251
  • [37] TWO NEW PROJECTION ALGORITHMS FOR VARIATIONAL INEQUALITIES IN HILBERT SPACES
    Tan, Bing
    Cho, Sun Young
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (11) : 2523 - 2534
  • [38] On the coderivative of the projection operator onto the positive cone in Hilbert spaces
    Hien, Le Van
    Quan, Nguyen Viet
    OPTIMIZATION, 2024,
  • [39] Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces
    Correa, Rafael
    Salas, David
    Thibault, Lionel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1307 - 1332
  • [40] Monotone projection algorithms for various nonlinear problems in Hilbert spaces
    Bin Dehaish, B. A.
    Bakodah, H. O.
    Latif, A.
    Qin, X.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 957 - 966