ON PROJECTION REFLECTION METHOD IN HILBERT SPACES

被引:0
|
作者
Matsushita, Shin-Ya [1 ]
Xu, Li [1 ]
机构
[1] Akita Prefectural Univ, Dept Elect & Informat Syst, Akita, Japan
关键词
ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite convergence of a variant of a projection reflection method for computing a point in the intersection of a closed convex set and an obtuse cone in a Hilbert space. We present a variant of the projection reflection method, and prove that the proposed variant converges to a solution to the problem in a finite number of iterations under certain assumptions.
引用
收藏
页码:2221 / 2226
页数:6
相关论文
共 50 条
  • [1] Continuous gradient projection method in Hilbert spaces
    Bolte, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (02) : 235 - 259
  • [2] Continuous Gradient Projection Method in Hilbert Spaces
    J. Bolte
    Journal of Optimization Theory and Applications, 2003, 119 : 235 - 259
  • [3] Viscosity approximations by the shrinking projection method in Hilbert spaces
    Kimura, Yasunori
    Nakajo, Kazuhide
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) : 1400 - 1408
  • [4] FIXED POINTS OF PSEUDOCONTRACTIVE MAPPINGS BY A PROJECTION METHOD IN HILBERT SPACES
    Yao, Yonghong
    Liou, Yeong-Cheng
    Chyu, Chiuh-Cheng
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2013, 14 (04) : 785 - 794
  • [5] An effective iterative projection method for variational inequalities in Hilbert spaces
    Dang Van Hieu
    Cho, Yeol Je
    Pham Kim Quy
    Nguyen Hai Ha
    SOFT COMPUTING, 2022, 26 (19) : 10207 - 10221
  • [6] An effective iterative projection method for variational inequalities in Hilbert spaces
    Dang Van Hieu
    Yeol Je Cho
    Pham Kim Quy
    Nguyen Hai Ha
    Soft Computing, 2022, 26 : 10207 - 10221
  • [7] Convergence Theorems by Using a Projection Method without the Monotonicity in Hilbert Spaces
    Arunchai, Areerat
    Plubtieng, Somyot
    Seangwattana, Thidaporn
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (03): : 1077 - 1087
  • [8] WEAK AND NORM CONVERGENCE OF A PARALLEL PROJECTION METHOD IN HILBERT-SPACES
    CROMBEZ, G
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 56 (01) : 35 - 48
  • [9] The Stochastic Reflection Problem in Hilbert Spaces
    Barbu, Viorel
    Da Prato, Giuseppe
    Tubaro, Luciano
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) : 352 - 367
  • [10] Single projection method for pseudo-monotone variational inequality in Hilbert spaces
    Shehu, Yekini
    Dong, Qiao-Li
    Jiang, Dan
    OPTIMIZATION, 2019, 68 (01) : 385 - 409