Dendritic and parallel processing of visual threats in the retina control defensive responses

被引:33
|
作者
Kim, T. [1 ,2 ,6 ]
Shen, N. [1 ]
Hsiang, J-C [1 ,2 ]
Johnson, K. P. [1 ,2 ]
Kerschensteiner, D. [1 ,3 ,4 ,5 ]
机构
[1] Washington Univ, Sch Med, John F Hardesty MD Dept Ophthalmol & Visual Sci, St Louis, MO 63110 USA
[2] Washington Univ, Grad Program Neurosci, Sch Med, St Louis, MO 63110 USA
[3] Washington Univ, Dept Neurosci, Sch Med, St Louis, MO 63110 USA
[4] Washington Univ, Dept Biomed Engn, Sch Med, St Louis, MO 63110 USA
[5] Washington Univ, Hope Ctr Neurol Disorders, Sch Med, St Louis, MO 63110 USA
[6] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
关键词
CELL-TYPE; AMACRINE CELLS; GANGLION-CELLS; CIRCUIT; INHIBITION; MOTION; SENSITIVITY; SELECTIVITY; COLLISION; OBJECT;
D O I
10.1126/sciadv.abc9920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approaching predators cast expanding shadows (i.e., looming) that elicit innate defensive responses in most animals. Where looming is first detected and how critical parameters of predatory approaches are extracted are unclear. In mice, we identify a retinal interneuron (the VG3 amacrine cell) that responds robustly to looming, but not to related forms of motion. Looming-sensitive calcium transients are restricted to a specific layer of the VG3 dendrite arbor, which provides glutamatergic input to two ganglion cells (W3 and OFF alpha). These projection neurons combine shared excitation with dissimilar inhibition to signal approach onset and speed, respectively. Removal of VG3 amacrine cells reduces the excitation of W3 and OFF alpha ganglion cells and diminishes defensive responses of mice to looming without affecting other visual behaviors. Thus, the dendrites of a retinal interneuron detect visual threats, divergent circuits downstream extract critical threat parameters, and these retinal computations initiate an innate survival behavior.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A brainstem-central amygdala circuit underlies defensive responses to learned threats
    Yiran Gu
    Walter T. Piper
    Lauren A. Branigan
    Elena M. Vazey
    Gary Aston-Jones
    Longnian Lin
    Joseph E. LeDoux
    Robert M. Sears
    Molecular Psychiatry, 2020, 25 : 640 - 654
  • [22] Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential
    Marcar, V. L.
    Battegay, E.
    Schmidt, D.
    Cheetham, M.
    VISION RESEARCH, 2022, 193
  • [23] A brainstem-central amygdala circuit underlies defensive responses to learned threats
    Gu, Yiran
    Piper, Walter T.
    Branigan, Lauren A.
    Vazey, Elena M.
    Aston-Jones, Gary
    Lin, Longnian
    LeDoux, Joseph E.
    Sears, Robert M.
    MOLECULAR PSYCHIATRY, 2020, 25 (03) : 640 - 654
  • [24] Parallel information processing in the retina: Segregation of visual signals by stratification of bipolar cell axon terminals.
    Wu, S
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2001, 42 (04) : S519 - S519
  • [25] A LAYERED MODEL FOR VISUAL PROCESSING IN AVIAN RETINA
    MORENODIAZ, R
    RUBIO, E
    NUNEZ, A
    BIOLOGICAL CYBERNETICS, 1980, 38 (02) : 85 - 89
  • [26] Presynaptic Proteins and Their Roles in Visual Processing by the Retina
    Thoreson, Wallace B.
    Zenisek, David
    ANNUAL REVIEW OF VISION SCIENCE, 2024, 10 : 347 - 375
  • [27] Melanopsin regulates visual processing in the mouse retina
    Barnard, AR
    Hattar, S
    Hankins, MW
    Lucas, RJ
    CURRENT BIOLOGY, 2006, 16 (04) : 389 - 395
  • [28] VISUAL RESPONSES OF CENTRIFUGAL NEURONES TO AVIAN RETINA
    MILES, FA
    BRAIN RESEARCH, 1971, 25 (02) : 411 - &
  • [29] Visual Responses in the Organotypically Cultured Mouse Retina
    Rathbun, Daniel Llewellyn
    Sahaboglu, Ayse
    Arango-Gonzalez, Blanca
    Zrenner, Eberhart
    Paquet-Durand, Francois
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [30] How the parallel channels of the retina contribute to depth processing
    Schiller, Peter H.
    Slocum, Warren M.
    Weiner, Veronica S.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2007, 26 (05) : 1307 - 1321