Dendritic and parallel processing of visual threats in the retina control defensive responses

被引:33
|
作者
Kim, T. [1 ,2 ,6 ]
Shen, N. [1 ]
Hsiang, J-C [1 ,2 ]
Johnson, K. P. [1 ,2 ]
Kerschensteiner, D. [1 ,3 ,4 ,5 ]
机构
[1] Washington Univ, Sch Med, John F Hardesty MD Dept Ophthalmol & Visual Sci, St Louis, MO 63110 USA
[2] Washington Univ, Grad Program Neurosci, Sch Med, St Louis, MO 63110 USA
[3] Washington Univ, Dept Neurosci, Sch Med, St Louis, MO 63110 USA
[4] Washington Univ, Dept Biomed Engn, Sch Med, St Louis, MO 63110 USA
[5] Washington Univ, Hope Ctr Neurol Disorders, Sch Med, St Louis, MO 63110 USA
[6] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
关键词
CELL-TYPE; AMACRINE CELLS; GANGLION-CELLS; CIRCUIT; INHIBITION; MOTION; SENSITIVITY; SELECTIVITY; COLLISION; OBJECT;
D O I
10.1126/sciadv.abc9920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approaching predators cast expanding shadows (i.e., looming) that elicit innate defensive responses in most animals. Where looming is first detected and how critical parameters of predatory approaches are extracted are unclear. In mice, we identify a retinal interneuron (the VG3 amacrine cell) that responds robustly to looming, but not to related forms of motion. Looming-sensitive calcium transients are restricted to a specific layer of the VG3 dendrite arbor, which provides glutamatergic input to two ganglion cells (W3 and OFF alpha). These projection neurons combine shared excitation with dissimilar inhibition to signal approach onset and speed, respectively. Removal of VG3 amacrine cells reduces the excitation of W3 and OFF alpha ganglion cells and diminishes defensive responses of mice to looming without affecting other visual behaviors. Thus, the dendrites of a retinal interneuron detect visual threats, divergent circuits downstream extract critical threat parameters, and these retinal computations initiate an innate survival behavior.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Gentle Handling Attenuates Innate Defensive Responses to Visual Threats
    Liu, Xuemei
    Chen, Chen
    Liu, Yuanming
    Wang, Zhijie
    Huang, Kang
    Wang, Feng
    Wang, Liping
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2018, 12
  • [2] The role of the right premotor cortex and temporo-parietal junction in defensive responses to visual threats
    Sagliano, Laura
    Vela, Maria
    Trojano, Luigi
    Conson, Massimiliano
    CORTEX, 2019, 120 : 532 - 538
  • [3] Influence of Aging on the Retina and Visual Motion Processing for Optokinetic Responses in Mice
    Sugita, Yuko
    Yamamoto, Haruka
    Maeda, Yamato
    Furukawa, Takahisa
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [4] Parallel processing in the mammalian retina
    Wässle, H
    NATURE REVIEWS NEUROSCIENCE, 2004, 5 (10) : 747 - 757
  • [5] Parallel processing in the mammalian retina
    Heinz Wässle
    Nature Reviews Neuroscience, 2004, 5 : 747 - 757
  • [6] Parallel visual cycles in the zebrafish retina
    Fleisch, Valerie C.
    Neuhauss, Stephan C. F.
    PROGRESS IN RETINAL AND EYE RESEARCH, 2010, 29 (06) : 476 - 486
  • [7] ORIENTING AND DEFENSIVE RESPONSES TO VISUAL-STIMULI
    HARE, RD
    PSYCHOPHYSIOLOGY, 1973, 10 (05) : 453 - 464
  • [8] Evolution of Visual Processing in the Human Retina
    Price, Trevor D.
    Khan, Rebia
    TRENDS IN ECOLOGY & EVOLUTION, 2017, 32 (11) : 810 - 813
  • [9] Retina-Inspired Visual Processing
    Garaas, Tyler W.
    Pomplun, Marc
    2007 2ND BIO-INSPIRED MODELS OF NETWORKS, INFORMATION AND COMPUTING SYSTEMS (BIONETICS), 2007, : 318 - 323
  • [10] Ribbon Synapses and Visual Processing in the Retina
    Lagnado, Leon
    Schmitz, Frank
    ANNUAL REVIEW OF VISION SCIENCE, VOL 1, 2015, 1 : 235 - 262