An integrated Monte Carlo data association framework for multi-object tracking

被引:0
|
作者
Xue, Jianru [1 ]
Zheng, Nanning [1 ]
Zhong, Xiaopin [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a sequential Monte Carlo data association algorithm based on a two-level computational framework for tracking varying number of interacting objects in dynamic scene. Firstly, we propose a hybrid measurements generation process to facilitate varying number problems, the process mixes target-oriented measurements provided by target dynamics prior model and data-oriented measurements based on discriminative model. Secondly, an improved Monte Carlo joint data association filter is used to combat the curse of dimension problem. Finally, the particle based belief propagation is used to facilitate interactions among objects. This framework integrates discriminative model learning, Monte Carlo joint data association filtering, and belief propagation algorithm, these methods are realized as different levels of approximation to an 'ideal' generative model of multiple visual targets tracking, and result in a novel sequential Monte Carlo data association algorithm. The algorithm is illustrated via tracking many pedestrians in a real video sequence.
引用
收藏
页码:703 / +
页数:2
相关论文
共 50 条
  • [41] Multi-object tracking algorithm based on multi-stage association
    Huo X.
    Gai S.
    Hong R.
    Zhou W.
    Da F.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (11): : 205 - 214
  • [42] Multi-Object Tracking with Object Candidate Fusion for Camera and LiDAR Data
    Yin, Huilin
    Lu, Yu
    Lin, Jia
    Schratter, Markus
    Watzenig, Daniel
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2965 - 2970
  • [43] Basketball-SORT: an association method for complex multi-object occlusion problems in basketball multi-object tracking
    Qingrui Hu
    Atom Scott
    Calvin Yeung
    Keisuke Fujii
    Multimedia Tools and Applications, 2024, 83 (38) : 86281 - 86297
  • [44] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [45] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [46] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [47] Multi-Object Tracking in the Dark
    Wang, Xinzhe
    Ma, Kang
    Liu, Qiankun
    Zou, Yunhao
    Fu, Ying
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 382 - 392
  • [48] LTTrack: Rethinking the Tracking Framework for Long-Term Multi-Object Tracking
    Lin, Jiaping
    Liang, Gang
    Zhang, Rongchuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9866 - 9881
  • [49] Multi-object Tracking with Spatial-Temporal Tracklet Association
    You, Sisi
    Yao, Hantao
    Bao, Bing-Kun
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [50] Enhancing the association in multi-object tracking via neighbor graph
    Liang, Tianyi
    Lan, Long
    Zhang, Xiang
    Peng, Xindong
    Luo, Zhigang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6713 - 6730