Stability estimates for the inverse boundary value problem by partial Cauchy data

被引:49
|
作者
Heck, Horst
Wang, Jenn-Nan
机构
[1] Tech Univ Darmstadt, FB Math, D-64289 Darmstadt, Germany
[2] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
D O I
10.1088/0266-5611/22/5/015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the inverse boundary value problem for the Schrodinger equation with a potential and the conductivity equation using partial Cauchy data. We derive stability estimates for these inverse problems.
引用
收藏
页码:1787 / 1796
页数:10
相关论文
共 50 条
  • [31] STABILITY ESTIMATES FOR THE INVERSE FRACTIONALCONDUCTIVITY PROBLEM
    Covi, Giovanni
    Railo, Jesse
    Tyni, Teemu
    Zimmermann, Philipp
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2456 - 2487
  • [32] Stability estimates for the holonomy inverse problem
    Cekic, Mihajlo
    Lefeuvre, Thibault
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (5-6) : 428 - 469
  • [33] Increasing Stability in an Inverse Boundary Value Problem-Bayesian Viewpoint
    Kow, Pu-Zhao
    Wang, Jenn-Nan
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 89 - 128
  • [34] Inverse problem by Cauchy data on an arbitrary sub-boundary for systems of elliptic equations
    Imanuvilov, O. Yu
    Yamamoto, M.
    INVERSE PROBLEMS, 2012, 28 (09)
  • [35] Stability estimates for the relativistic Schrodinger equation from partial boundary data
    Senapati, Soumen
    INVERSE PROBLEMS, 2021, 37 (01)
  • [36] On a quasilinear inverse boundary value problem
    Sun, ZQ
    MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (02) : 293 - 305
  • [37] An inverse boundary value problem in electrodynamics
    Slichter, L. B.
    PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1933, 4 (01): : 411 - 418
  • [38] An inverse boundary value problem in seismology
    Pekeris, Chaim L.
    PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1934, 5 (01): : 307 - 316
  • [39] The Cauchy problem and the initial boundary value problem in numerical relativity
    Stewart, JM
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2865 - 2889
  • [40] Stably numerical solving inverse boundary value problem for data assimilation
    Mu, Xiyu
    Cheng, Hao
    Xu, Qi
    Liu, Guoqing
    APPLIED MATHEMATICAL MODELLING, 2020, 82 : 825 - 835