3D Multi-Object Tracking Based on Radar-Camera Fusion

被引:6
|
作者
Lin, Zihao [1 ]
Hu, Jianming [2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ITSC55140.2022.9921931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-target tracking is the cornerstone of autonomous driving. Only on this basis can we achieve tracking and path planning. Detection problem is an important part of environment perception system. Therefore, it has become a hot spot in related fields such as computer vision and autonomous driving. 3D object detection adds more information than 2D object detection, such as size, depth, pose, etc. However, the 3D information obtained based on the image, especially the depth, is very inaccurate, so that the detection frame information has a large deviation. The trajectory tracking ability based on these detection results is also reduced accordingly. Our research proposes a method to detect 3D information by combining data from cameras and mmWave radar. We then apply this result to the multi-object tracking problem. It achieves a MOTA of 70.0 and a IDF1 of 73.1 on the NuScenes dataset.
引用
收藏
页码:2502 / 2507
页数:6
相关论文
共 50 条
  • [41] 3D Multi-object Tracking Based on Simultaneous Optimization of Object Detection and Scene Flow Estimation
    Wang, Guangming
    Song, Liang
    Shen, Yueling
    Wang, Hesheng
    Jiqiren/Robot, 2024, 46 (05): : 554 - 561
  • [42] 3D Multi-object Detection and Tracking with Sparse Stationary LiDAR
    Zhang, Meng
    Pan, Zhiyu
    Feng, Jianjiang
    Zhou, Jie
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 16 - 28
  • [43] Motion Compensation Optimization Method for 3D Multi-Object Tracking
    Wang S.-H.
    Zhang Y.
    Shen J.-N.
    Ji J.-M.
    Zhang Y.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (02): : 528 - 539
  • [44] 3D Multi-Object Tracking: A Baseline and New Evaluation Metrics
    Weng, Xinshuo
    Wang, Jianren
    Held, David
    Kitani, Kris
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10359 - 10366
  • [45] Learnable Online Graph Representations for 3D Multi-Object Tracking
    Zaech, Jan-Nico
    Liniger, Alexander
    Dai, Dengxin
    Danelljan, Martin
    Van Gool, Luc
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 5103 - 5110
  • [46] A Fusion of Dynamic Occupancy Grid Mapping and Multi-object Tracking Based on Lidar and Camera Sensors
    Wang, Yuchun
    Wang, Boyang
    Wang, Xu
    Tan, Yingqi
    Qi, Jianyong
    Gong, Jianwei
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 107 - 112
  • [47] Multi-Object tracking of 3D cuboids using aggregated features
    Muresan, Mircea Paul
    Nedevschi, Sergiu
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 11 - 18
  • [48] FANTrack: 3D Multi-Object Tracking with Feature Association Network
    Baser, Erkan
    Balasubramanian, Venkateshwaran
    Bhattacharyya, Prarthana
    Czarnecki, Krzysztof
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1426 - 1433
  • [49] Exploring Simple 3D Multi-Object Tracking for Autonomous Driving
    Luo, Chenxu
    Yang, Xiaodong
    Yuille, Alan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10468 - 10477
  • [50] Robust Multiobject Tracking Using Mmwave Radar-Camera Sensor Fusion
    Sengupta, Arindam
    Cheng, Lei
    Cao, Siyang
    IEEE SENSORS LETTERS, 2022, 6 (10)