Identification of Proteins for Salt Tolerance Using a Comparative Proteomics Analysis of Tomato Accessions with Contrasting Salt Tolerance

被引:15
|
作者
Nveawiah-Yoho, Peter [1 ]
Zhou, Jing [1 ]
Palmer, Marsha [1 ]
Sauve, Roger [1 ]
Zhou, Suping [1 ]
Howe, Kevin J. [2 ]
Fish, Tara [2 ]
Thannhauser, Theodore W. [2 ]
机构
[1] Tennessee State Univ, Dept Agr Sci, Coll Agr Human & Nat Sci, Nashville, TN 37209 USA
[2] USDA ARS, Plant Soil & Nutr Res Unit, Ithaca, NY 14853 USA
基金
美国食品与农业研究所;
关键词
ARABIDOPSIS-THALIANA; ATPASE ACTIVITY; STRESS; ROOT; GENE; BINDING; LYCOPERSICON; GROWTH; RICE; OVEREXPRESSION;
D O I
10.21273/JASHS.138.5.382
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Tomato (Solanum lycopersicum) has a wide variety of genotypes differing in their responses to salinity. This study was performed to identify salt-induced changes in proteomes that are distinguishable among tomatoes with contrasting salt tolerance. Tomato accessions [LA4133 (a salt-tolerant cherry tomato accession) and 'Walter' LA3465 (a salt-susceptible accession)] were subjected to salt treatment (200 mM NaCl) in hydroponic culture. Salt-induced changes in the root proteomes of each tomato accession were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) method. In LA4133, 178 proteins showed significant differences between salt-treated and non-treated control root tissues (P <= 0.05); 169 proteins were induced (1.3- to 5.1-fold) and nine repressed (-1.7- to -1.3-fold). In LA3465, 115 proteins were induced (1.3- to 6.4-fold) and 23 repressed (-2.5- to -1.3-fold). Salt-responsive proteins from the two tomato accessions were involved in the following biological processes: root system development and structural integrity; carbohydrate metabolism; adenosine-5'-triphosphate regeneration and consumption; amino acid metabolism; fatty acid metabolism; signal transduction; cellular detoxification; protein turnover and intracellular trafficking; and molecular activities for regulating gene transcription, protein translation, and post-translational modification. Proteins affecting diverse cellular activities were identified, which include chaperonins and cochaperonins, heat-shock proteins, antioxidant enzymes, and stress proteins. Proteins exhibiting different salt-induced changes between the tolerant and susceptible tomato accessions were identified, and these proteins were divided into two groups: 1) proteins with quantitative differences because they were induced or repressed by salt stress in both accessions but at different fold levels; and 2) proteins showing qualitative differences, where proteins were induced in one vs. repressed or not changed in the other accession. Candidate proteins for tolerance to salt and secondary cellular stresses (such as hypo-osmotic stress and dehydration) were proposed based on findings from the current and previous studies on tomato and by the use of the Arabidopsis thaliana protein database. Information provided in this report will be very useful for evaluating and breeding for plant tolerance to salt and/or water deficit stresses.
引用
收藏
页码:382 / 394
页数:13
相关论文
共 50 条
  • [31] Recent Advances in Genetics of Salt Tolerance in Tomato
    M. R. Foolad
    Plant Cell, Tissue and Organ Culture, 2004, 76 : 101 - 119
  • [32] Transport proteins and salt tolerance in plants
    Mansour, MMF
    Salama, KHA
    Al-Mutawa, MM
    PLANT SCIENCE, 2003, 164 (06) : 891 - 900
  • [33] Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance
    Chen, Fenqi
    Fang, Peng
    Peng, Yunling
    Zeng, Wenjing
    Zhao, Xiaoqiang
    Ding, Yongfu
    Zhuang, Zelong
    Gao, Qiaohong
    Ren, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [34] Improving the Salt Tolerance of "Old Limachino Tomato" by Using a New Salt-Tolerant Rootstock
    Martinez, Juan-Pablo
    Fuentes, Raul
    Badilla, Danitza
    Rosales, Camila
    Alfaro-Quezada, Juan Felipe
    Correa, Francisco
    Lizana, Carolina
    Sagredo, Boris
    Quinet, Muriel
    Lutts, Stanley
    HORTICULTURAE, 2024, 10 (08)
  • [35] Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model
    Daryush Talei
    Alireza Valdiani
    Mohd Khanif Yusop
    Mohd Puad Abdullah
    Euphytica, 2013, 189 : 147 - 160
  • [36] Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model
    Talei, Daryush
    Valdiani, Alireza
    Yusop, Mohd Khanif
    Abdullah, Mohd Puad
    EUPHYTICA, 2013, 189 (01) : 147 - 160
  • [37] A comparative in vitro study of salt tolerance in cultivated tomato and related wild species
    Zaki, Haitham E. M.
    Yokoi, Shuji
    PLANT BIOTECHNOLOGY, 2016, 33 (05) : 361 - +
  • [38] Selection of sunflower genotypes for salt stress and mechanisms of salt tolerance in contrasting genotypes
    de Azevedo Neto, Andre Dias
    Azevedo Barros Mota, Katia Nubia
    Conceicao Silva, Petterson Costa
    Watanabe Cova, Alide Mitsue
    Ribas, Rogerio Ferreira
    Gheyi, Hans Raj
    CIENCIA E AGROTECNOLOGIA, 2020, 44
  • [39] Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance
    Chen, Chengxuan
    Shang, Xiaoling
    Sun, Meiyu
    Tang, Sanyuan
    Khan, Aimal
    Zhang, Dan
    Yan, Hongdong
    Jiang, Yanxi
    Yu, Feifei
    Wu, Yaorong
    Xie, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [40] Redox Regulation of Salt Tolerance in Eutrema salsugineum by Proteomics
    Li, Jiawen
    Yang, Xiaomin
    Liu, Fuqing
    Liu, Xinxin
    Zhao, Tong
    Yan, Xiufeng
    Pang, Qiuying
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)