Devil's staircase in kinetically limited growth

被引:2
|
作者
Ackland, GJ
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.66.041605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The devil's staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a one-dimensional Ising model [P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982)] wherein long-range and short-range forces compete, and the periodicity of the gaps between minority species covers all rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the equilibrium ground state via a devil's staircase traversing an infinity of intermediate phases. It would be extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Crystalline phases and devil's staircase in qubit spin ice
    Kondakor, Mark
    Penc, Karlo
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [42] Devil's staircase in Pb/Si(111) ordered phases
    Hupalo, M
    Schmalian, J
    Tringides, MC
    PHYSICAL REVIEW LETTERS, 2003, 90 (21)
  • [43] A complete devil's staircase in the Falicov-Kimball model
    Micheletti, C
    Harris, AB
    Yeomans, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : L711 - L717
  • [44] Multiple devil's staircase and type-V intermittency
    Qu, SX
    Wu, SG
    He, DR
    PHYSICAL REVIEW E, 1998, 57 (01): : 402 - 411
  • [45] Devil's staircase in a dissipative fifth-order system
    Bekki, N
    Karakisawa, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (08) : 2443 - 2454
  • [46] Two musical paths to the Farey series and devil's staircase
    Cartwright, Julyan H. E.
    Douthett, Jack
    Gonzalez, Diego L.
    Krantz, Richard
    Piro, Oreste
    JOURNAL OF MATHEMATICS AND MUSIC, 2010, 4 (01) : 57 - 74
  • [47] The Boundary Integral Equation for Kinetically Limited Dendrite Growth
    Titova, Ekaterina A.
    Galenko, Peter K.
    Nikishina, Margarita A.
    Toropova, Liubov V.
    Alexandrov, Dmitri V.
    AXIOMS, 2023, 12 (11)
  • [48] Systematic prediction of kinetically limited crystal growth morphologies
    Du, DX
    Srolovitz, DJ
    Coltrin, ME
    Mitchell, CC
    PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [49] Fluctuation forces and the devil's staircase of ferro/antiferroelectric smectic C 'S
    Prost, Jacques
    Bruinsma, Robijn
    Ferroelectrics, 1993, 148 (1 -4 pt 2) : 25 - 29
  • [50] Fluctuation forces and the devil's staircase of ferroelectric smectic C+s
    Bruinsma, R.
    Prost, J.
    Journal De Physique, II, 1994, 4 (07):