Devil's staircase in kinetically limited growth

被引:2
|
作者
Ackland, GJ
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.66.041605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The devil's staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a one-dimensional Ising model [P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982)] wherein long-range and short-range forces compete, and the periodicity of the gaps between minority species covers all rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the equilibrium ground state via a devil's staircase traversing an infinity of intermediate phases. It would be extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Devil's staircase in Kondo semimetals
    Ueda, K
    Shibata, N
    Ishii, C
    PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) : 426 - 428
  • [2] Devil's staircase for nonconvex interactions
    Jedrzejewski, J
    Miekisz, J
    EUROPHYSICS LETTERS, 2000, 50 (03): : 307 - 311
  • [3] FOURIER SERIES OF A DEVIL'S STAIRCASE
    Kwon, Doyong
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (02): : 259 - 267
  • [4] How smooth is a devil's staircase?
    Dekking, FM
    Li, WX
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 (01) : 101 - 107
  • [5] Devil's staircase in Kondo semimetals
    Ueda, Kazuo
    Shibata, Naokazu
    Ishii, Chikara
    Physica B: Condensed Matter, 1996, 223-224 (1-4): : 426 - 428
  • [6] Devil's staircase of gap maps
    Ban, JC
    Hsu, CH
    Lin, SS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 115 - 122
  • [7] Devil's staircase in an optomechanical cavity
    Wang, Hui
    Dhayalan, Yuvaraj
    Buks, Eyal
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [8] Multipole polaron in the devil's staircase of CeSb
    Arai, Y.
    Kuroda, Kenta
    Nomoto, T.
    Tin, Z. H.
    Sakuragi, S.
    Bareille, C.
    Akebi, S.
    Kurokawa, K.
    Kinoshita, Y.
    Zhang, W-L
    Shin, S.
    Tokunaga, M.
    Kitazawa, H.
    Haga, Y.
    Suzuki, H. S.
    Miyasaka, S.
    Tajima, S.
    Iwasa, K.
    Arita, R.
    Kondo, Takeshi
    NATURE MATERIALS, 2022, 21 (04) : 410 - +
  • [9] Multipole polaron roams the devil’s staircase
    Jian-Xin Zhu
    Nature Materials, 2022, 21 : 384 - 385