Derivative superconvergence of linear finite elements by recovery techniques

被引:0
|
作者
Zhang, T [1 ]
Li, CJ
Nie, YY
机构
[1] Acad Sinica, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Shenyang 110004, Peoples R China
关键词
boundary problems; finite element; derivative approximations; recovery techniques; superconvergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to investigate the superconvergence in derivative approximations of finite element solutions. We construct three kinds of derivative recovery formulas at the mesh points for linear, bilinear and quadrilateral finite elements, respectively, in the approximations of second order elliptic boundary value problems. These recovery formulas are simpler and more available comparing to the existing formulas. We also show the superconvergence for each derivative recovery formulas.
引用
收藏
页码:853 / 862
页数:10
相关论文
共 50 条
  • [21] Superconvergence of tricubic block finite elements
    LIU JingHong1
    Science China Mathematics, 2009, (05) : 959 - 972
  • [22] Superconvergence of tetrahedral quadratic finite elements
    Brandts, J
    Krízek, M
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (01) : 27 - 36
  • [23] Superconvergence of tricubic block finite elements
    JingHong Liu
    HaiNa Sun
    QiDing Zhu
    Science in China Series A: Mathematics, 2009, 52 : 959 - 972
  • [24] Superconvergence for rectangular serendipity finite elements
    Chen, CM
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01): : 1 - 10
  • [25] Superconvergence of tricubic block finite elements
    Liu JingHong
    Sun HaiNa
    Zhu QiDing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 959 - 972
  • [26] Superconvergence for Triangular Linear Edge Elements
    Wu, Chao
    Huang, Yunqing
    Lu, Wenying
    Xiong, Zhiguang
    Yuan, Jinyun
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (04) : 1045 - 1070
  • [27] SUPERCONVERGENCE RESULTS FOR LINEAR TRIANGULAR ELEMENTS
    KRIZEK, M
    LECTURE NOTES IN MATHEMATICS, 1986, 1192 : 315 - 320
  • [28] SUPERCONVERGENCE ANALYSIS OF THE STABLE CONFORMING RECTANGULAR MIXED FINITE ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM
    Shi, Dongyang
    Li, Minghao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 205 - 214
  • [29] Derivative recovery and a posteriori error estimate for extended finite elements
    Bordas, Stephane
    Duflot, Marc
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) : 3381 - 3399
  • [30] SUPERCONVERGENCE ANALYSIS OF THE LINEAR FINITE ELEMENT METHOD AND A GRADIENT RECOVERY POSTPROCESSING ON ANISOTROPIC MESHES
    Cao, Weiming
    MATHEMATICS OF COMPUTATION, 2015, 84 (291) : 89 - 117