Schottky-barrier thin-film transistors based on HfO2-capped InSe

被引:18
|
作者
Wang, Yiming [1 ,2 ]
Zhang, Jiawei [3 ]
Liang, Guangda [1 ,2 ]
Shi, Yanpeng [1 ,2 ]
Zhang, Yifei [1 ,2 ]
Kudrynskyi, Zakhar R. [4 ]
Kovalyuk, Zakhar D. [5 ]
Patane, Amalia [4 ]
Xin, Qian [1 ,2 ]
Song, Aimin [1 ,2 ,3 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Ctr Nanoelect, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Sch Microelect, Jinan 250100, Shandong, Peoples R China
[3] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
[4] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[5] Natl Acad Sci Ukraine, Inst Problems Mat Sci, Chernivtsi Branch, UA-58001 Chernovtsy, Ukraine
基金
英国工程与自然科学研究理事会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
CONTACT RESISTANCE; SCATTERING; NANOSHEETS; BEHAVIOR;
D O I
10.1063/1.5096965
中图分类号
O59 [应用物理学];
学科分类号
摘要
Indium selenide (InSe) is an emerging two-dimensional semiconductor and a promising candidate for next generation thin film transistors (TFTs). Here, we report on Schottky barrier TFTs (SB-TFTs) in which a 0.9-nm-thick HfO2 dielectric layer encapsulates an InSe nanosheet, thus protecting the InSe-channel from the environment and reducing the Schottky-contact resistance through a dielectric dipole effect. These devices exhibit a low saturation source-drain voltage V-sat<2V and current densities of up to J=2mA/mm, well suited for low-power electronics. We present a detailed analysis of this type of transistor using the Y-function method from which we obtain accurate estimates of the contact resistance and field-effect mobility.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] E2 phase transition:: Thin-film breakdown and Schottky-barrier suppression -: art. no. 155332
    Karpov, VG
    Shvydka, D
    Roussillon, Y
    PHYSICAL REVIEW B, 2004, 70 (15) : 155332 - 1
  • [22] THEORETICAL PERFORMANCE OF BACK-ILLUMINATED THIN-FILM MIS SCHOTTKY-BARRIER SOLAR-CELLS
    KRISHNAMURTHY, GSR
    KAPADIA, VV
    RAO, VJ
    SINHA, APB
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1980, 57 (02): : 691 - 696
  • [23] COMPARATIVE CALCULATIONS FOR THIN-FILM AND BULK SINGLE-CRYSTAL SCHOTTKY-BARRIER SOLAR-CELLS
    SOUKUP, RJ
    AKERS, LA
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (07) : 4031 - 4034
  • [24] Conduction mechanisms for off-state leakage current of Schottky barrier thin-film transistors
    Yeh, KL
    Lin, HC
    Huang, RG
    Tsai, RW
    Huang, TY
    APPLIED PHYSICS LETTERS, 2001, 79 (05) : 635 - 637
  • [25] Thin-film transistors of rhodanine end-capped oligothiophene
    Tachibana, Hiroaki
    Toda, Naoya
    Azumi, Reiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SB)
  • [26] Schottky barrier modulation of bottom contact SnO2 thin-film transistors via chloride-based combustion synthesis
    Jang, Bongho
    Lee, Junhee
    Kang, Hongki
    Jang, Jaewon
    Kwon, Hyuk-Jun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 148 : 199 - 208
  • [27] AMORPHOUS-CHALCOGENIDE THIN-FILM SCHOTTKY-BARRIER (BI/AS2SE3-BI) SOLAR-CELL
    KUMAR, S
    MEHTA, BR
    KASHYAP, SC
    CHOPRA, KL
    APPLIED PHYSICS LETTERS, 1988, 52 (01) : 24 - 26
  • [28] THEORY AND MEASUREMENTS OF PHOTORESPONSE FOR THIN-FILM PD2SI AND PTSI INFRARED SCHOTTKY-BARRIER DETECTORS WITH OPTICAL CAVITY
    ELABD, H
    KOSONOCKY, WF
    RCA REVIEW, 1982, 43 (04): : 569 - 589
  • [29] Highly Efficient Silicon-Based Thin-Film Schottky Barrier Photodetectors
    Seok, Jongeun
    Yu, Kyoungsik
    Jin, Yeonghoon
    ACS PHOTONICS, 2023, 10 (05) : 1302 - 1309
  • [30] BARRIER-LIMITED CONDUCTIVITY IN THIN-FILM TRANSISTORS
    ANDERSON, JC
    THIN SOLID FILMS, 1976, 37 (01) : 127 - 135