Non-fixation for biased Activated Random Walks

被引:12
|
作者
Rolla, L. T. [1 ,2 ]
Tournier, L. [3 ]
机构
[1] Univ Buenos Aires, Argentinian Natl Res Council, Buenos Aires, DF, Argentina
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] Univ Paris 13, CNRS UMR 7539, LAGA, Sorbonne Paris Cite, F-93430 Villetaneuse, France
关键词
Interacting particle systems; Activated Random Walks; Absorbing-state; Phase transition;
D O I
10.1214/17-AIHP827
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the model of Activated Random Walks on Z(d) with biased jump distribution does not fixate for any positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof uses a new criterion for non-fixation. We provide a pathwise construction of the process, of independent interest, used in the proof of this non-fixation criterion.
引用
收藏
页码:938 / 951
页数:14
相关论文
共 50 条
  • [31] Non-equilibrium Phase Transitions: Activated Random Walks at Criticality
    M. Cabezas
    L. T. Rolla
    V. Sidoravicius
    Journal of Statistical Physics, 2014, 155 : 1112 - 1125
  • [32] Non-equilibrium Phase Transitions: Activated Random Walks at Criticality
    Cabezas, M.
    Rolla, L. T.
    Sidoravicius, V.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) : 1112 - 1125
  • [33] Chronic abdominal pain & colonic non-fixation case report
    Howe, Brett
    Buetter, Andreana
    JOURNAL OF PEDIATRIC SURGERY CASE REPORTS, 2014, 2 (04) : 159 - 161
  • [34] Regularity of biased 1D random walks in random environment
    Faggionato, Alessandra
    Salvi, Michele
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1213 - 1248
  • [35] Biased random walks on Galton-Watson trees
    Lyons, R
    Pemantle, R
    Peres, Y
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (02) : 249 - 264
  • [36] Characteristic times of biased random walks on complex networks
    Bonaventura, Moreno
    Nicosia, Vincenzo
    Latora, Vito
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [37] Time-Biased Random Walks and Robustness of Expanders
    Olesker-Taylor, Sam
    Sauerwald, Thomas
    Sylvester, John
    arXiv,
  • [38] Comparison of mesh fixation and non-fixation in laparoscopic totally extraperitoneal inguinal hernia repair
    K. Buyukasik
    A. Ari
    B. Akce
    C. Tatar
    O. Segmen
    H. Bektas
    Hernia, 2017, 21 : 543 - 548
  • [39] The most visited sites of biased random walks on trees
    Hu, Yueyun
    Shi, Zhan
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 14
  • [40] Effect of temperature on biased random walks in disordered media
    Arapaki, E
    Argyrakis, P
    Avramov, I
    Milchev, A
    PHYSICAL REVIEW E, 1997, 56 (01): : R29 - R31