Non-fixation for biased Activated Random Walks

被引:12
|
作者
Rolla, L. T. [1 ,2 ]
Tournier, L. [3 ]
机构
[1] Univ Buenos Aires, Argentinian Natl Res Council, Buenos Aires, DF, Argentina
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] Univ Paris 13, CNRS UMR 7539, LAGA, Sorbonne Paris Cite, F-93430 Villetaneuse, France
关键词
Interacting particle systems; Activated Random Walks; Absorbing-state; Phase transition;
D O I
10.1214/17-AIHP827
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the model of Activated Random Walks on Z(d) with biased jump distribution does not fixate for any positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof uses a new criterion for non-fixation. We provide a pathwise construction of the process, of independent interest, used in the proof of this non-fixation criterion.
引用
收藏
页码:938 / 951
页数:14
相关论文
共 50 条
  • [1] ON FIXATION OF ACTIVATED RANDOM WALKS
    Amir, Gideon
    Gurel-Gurevich, Ori
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 119 - 123
  • [2] Biased random walks
    Azar, Y
    Broder, AZ
    Karlin, AR
    Linial, N
    Phillips, S
    COMBINATORICA, 1996, 16 (01) : 1 - 18
  • [3] FIXATION VERSUS NON-FIXATION OF OSTEOTOMIES OF THE FOOT
    WOOD, WA
    JOURNAL OF THE AMERICAN PODIATRIC MEDICAL ASSOCIATION, 1986, 76 (04): : 199 - 204
  • [4] Biased random walks on random combs
    Elliott, Tanya M.
    Wheater, John F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : 8265 - 8288
  • [5] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [6] Fragment formation in biased random walks
    Ramola, Kabir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [7] SCALING IN BIASED RANDOM-WALKS
    HALLEY, JW
    NAKANISHI, H
    SUNDARARAJAN, R
    PHYSICAL REVIEW B, 1985, 31 (01): : 293 - 298
  • [8] Time Dependent Biased Random Walks
    Haslegrave, John
    Sauerwald, Thomas
    Sylvester, John
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (02)
  • [9] Biased random walks on the interlacement set
    Fribergh, Alexander
    Popov, Serguei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1341 - 1358
  • [10] Biased random walks on directed trees
    Takacs, C
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (01) : 123 - 139