Self-regular stress integral equations for axisymmetric elasticity

被引:2
|
作者
Pasternak, Iaroslav [1 ]
Sulym, Heorhiy [2 ,3 ]
机构
[1] Lutsk Natl Tech Univ, UA-43018 Lutsk, Ukraine
[2] Ivan Franko Natl Univ Lviv, UA-79000 Lvov, Ukraine
[3] Bialystok Tech Univ, Fac Mech Engn, PL-15351 Bialystok, Poland
关键词
Boundary element method; Hypersingular integral; Linear axisymmetric elasticity; Regularization; Self-regular;
D O I
10.1016/j.enganabound.2009.04.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stress hypersingular integral equations of axisymmetric elasticity are considered. The singular and hypersingular integrals are regularized using the imposition of auxiliary polynomial solution, and self-regular integral equations are obtained for bounded and unbounded domains. The presented numerical examples show high efficiency of the proposed approach. The boundary layer effect is completely eliminated, and stresses and deformations can be calculated in the whole domain continuously up to the boundary. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1001 / 1004
页数:4
相关论文
共 50 条
  • [21] An object-oriented tridimensional self-regular boundary element method implementation
    Anacleto, F. E. S.
    Ribeiro, T. S. A.
    Ribeiro, G. O.
    Pitangueira, R. L. S.
    Penna, S. S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (10) : 1276 - 1284
  • [22] Self-Regular Black Holes Quantized by means of an Analogue to Hydrogen Atoms
    Liu, Chang
    Miao, Yan-Gang
    Wu, Yu-Mei
    Zhang, Yu-Hao
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [23] Extension of the variational self-regular approach for the flux boundary element method formulation
    Porto, PAC
    Jorge, AB
    Ribeiro, GO
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2005, 10 (01): : 65 - 77
  • [24] ON THE APPLICATION OF INTEGRAL-EQUATIONS IN ELASTICITY
    LEKO, TD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (04): : T215 - T216
  • [25] INTEGRAL EQUATIONS FORMULATION OF CLASSICAL ELASTICITY
    KANWAL, RP
    QUARTERLY OF APPLIED MATHEMATICS, 1969, 27 (01) : 57 - &
  • [26] DERIVATIONS OF INTEGRAL-EQUATIONS OF ELASTICITY
    HONG, HK
    CHEN, JT
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1988, 114 (06): : 1028 - 1044
  • [27] AXISYMMETRIC STRESS CONCENTRATION PROBLEMS IN COSSERAT ELASTICITY
    PURI, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (02): : 320 - &
  • [28] An adaptive self-regular proximity based large-update IPM for LO
    Salahi, M
    Terlaky, T
    OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (01): : 163 - 179
  • [29] Theory of Integral Equations for Axisymmetric Scattering by a Disk
    Eminov, S., I
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (08) : 1372 - 1379
  • [30] Theory of Integral Equations for Axisymmetric Scattering by a Disk
    S. I. Eminov
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1372 - 1379