Efficient privacy-preserving classification construction model with differential privacy technology

被引:18
|
作者
Zhang, Lin [1 ,2 ]
Liu, Yan [1 ]
Wang, Ruchuan [1 ,2 ]
Fu, Xiong [1 ,2 ]
Lin, Qiaomin [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing 210003, Jiangsu, Peoples R China
[2] Jiangsu High Technol Res Key Lab Wireless Sensor, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
differential privacy; data mining; privacy-preserving; decision tree; ALGORITHM;
D O I
10.21629/JSEE.2017.01.19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problem of privacy disclosure during data mining, a new privacy-preserving decision tree classification construction model based on a differential privacy-protection mechanism is presented. An efficient classifier that uses feedback to add two types of noise via Laplace and exponential mechanisms to perturb the calculation results are introduced to the construction algorithm that provides a secure data access interface for users. Different split solutions for attributes of continuous and discrete values are provided and used to optimize the search scheme to reduce the error rate of the classifier. By choosing an available quality function with lower sensitivity for making decisions and improving the privacy budget allocation methods, the algorithm effectively resists malicious attacks that depend on the background knowledge. The potential problem of obtaining personal information by guessing unknown sensitive nodes of tree-type data is solved correspondingly. The better privacy preservation and accuracy of this new algorithm are shown by simulation experiments.
引用
收藏
页码:170 / 178
页数:9
相关论文
共 50 条
  • [21] A privacy-preserving classification mining algorithm
    Ge, WP
    Wang, W
    Li, XR
    Shi, B
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 256 - 261
  • [22] Privacy-preserving quantum machine learning using differential privacy
    Senekane, Makhamisa
    Mafu, Mhlambululi
    Taele, Benedict Molibeli
    2017 IEEE AFRICON, 2017, : 1432 - 1435
  • [23] Privacy-preserving naive Bayesian classification
    Zhan, Z
    Chang, LW
    Matwin, S
    Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Vols 1and 2, 2004, : 14 - 20
  • [24] Privacy-preserving classification of Data streams
    Chao, Ching-Ming
    Chen, Po-Zung
    Sun, Chu-Hao
    Tamkang Journal of Science and Engineering, 2009, 12 (03): : 321 - 330
  • [25] Privacy-Preserving Naive Bayes Classification
    Huai, Mengdi
    Huang, Liusheng
    Yang, Wei
    Li, Lu
    Qi, Mingyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2015, 2015, 9403 : 627 - 638
  • [26] Lightweight privacy-Preserving data classification
    Ngoc Hong Tran
    Le-Khac, Nhien-An
    Kechadi, M-Tahar
    COMPUTERS & SECURITY, 2020, 97
  • [27] Privacy-preserving Naive Bayes classification
    Vaidya, Jaideep
    Kantarcioglu, Murat
    Clifton, Chris
    VLDB JOURNAL, 2008, 17 (04): : 879 - 898
  • [28] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [29] SecDM: privacy-preserving data outsourcing framework with differential privacy
    Dagher, Gaby G.
    Fung, Benjamin C. M.
    Mohammed, Noman
    Clark, Jeremy
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (05) : 1923 - 1960
  • [30] Model averaging with privacy-preserving
    He, Baihua
    Dong, Fangli
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1401 - 1414