Minimax regret estimation in linear models

被引:0
|
作者
Eldar, YC [1 ]
Ben-Tal, A [1 ]
Nemirovski, A [1 ]
机构
[1] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We develop a new linear estimator for estimating an unknown vector x in a linear model, in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret across all bounded data vectors, namely the worst-case difference between the MSE attainable using a linear estimator that does not know the true parameters x, and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [41] Minimax estimation for time series models
    Liu, Yan
    Taniguchi, Masanobu
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (03): : 353 - 359
  • [42] Implementation in minimax regret equilibrium
    Renou, Ludovic
    Schlag, Karl H.
    GAMES AND ECONOMIC BEHAVIOR, 2011, 71 (02) : 527 - 533
  • [43] Precise minimax redundancy and regret
    Drmota, M
    Szpankowski, W
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) : 2686 - 2707
  • [44] Heuristic to minimax absolute regret for linear programs with interval objective function coefficients
    Grad. Sch. of Bus. Administration, University of Colorado at Boulder, Boulder, CO 80309-0419, United States
    Eur J Oper Res, 1 (157-174):
  • [45] MINIMAX REGRET SOLUTION TO LINEAR-PROGRAMMING PROBLEMS WITH AN INTERVAL OBJECTIVE FUNCTION
    INUIGUCHI, M
    SAKAWA, M
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 86 (03) : 526 - 536
  • [46] A heuristic to minimax absolute regret for linear programs with interval objective function coefficients
    Mausser, HE
    Laguna, M
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (01) : 157 - 174
  • [47] Statistical Methods for Minimax Estimation in Linear Models with Unknown Design Over Finite Alphabets
    Behr, Merle
    Munk, Axel
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (02): : 490 - 513
  • [48] Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path
    Di, Qiwei
    He, Jiafan
    Zhou, Dongruo
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [49] Minimax regret analysis of orthogonal series regression estimation: Selection versus shrinkage
    Droge, B
    BIOMETRIKA, 1998, 85 (03) : 631 - 643
  • [50] Intrinsic posterior regret gamma-minimax estimation for the exponential family of distributions
    Jozani, Mohammad Jafari
    Tabrizi, Nahid Jafari
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1856 - 1874