Hypergraph based Semi-supervised Learning for Gender Classification

被引:0
|
作者
Zhang, Zhihong [1 ]
Hancock, Edwin R. [1 ]
Ren, Peng [2 ]
机构
[1] Univ York, York YO10 5DD, N Yorkshire, England
[2] China Univ Petrol, Huadong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based methods are an important category of semi-supervised learning techniques. However, in many situations the graph representation of relational patterns can lead to substantial loss of information. This is because in real-world problems objects and their features tend to exhibit multiple relationships rather than simple pairwise ones. In this paper, we develop a semi-supervised learning method which is based on a weighted hypergraph representation. There are two main contributions in this paper. The first is that we develop a hypergraph representation based on the attributes of feature vectors, i.e. a feature hypergraph. With this representation, the structural information latent in the data can be more effectively modeled. Secondly, to address semi-supervised classification, we derive a l(1)-norm for the spectral embedding minimization problem on the learned hypergraph. This leads to sparse and direct clustering results. We apply the method to the challenging problem of gender determination using features delivered by principal geodesic analysis (PGA). We obtain a classification accuracy as high as 91% on 2.5D facial needle-maps when 50% of the data are labeled.
引用
收藏
页码:1747 / 1750
页数:4
相关论文
共 50 条
  • [41] Semi-supervised learning for question classification in CQA
    Yiyang Li
    Lei Su
    Jun Chen
    Liwei Yuan
    Natural Computing, 2017, 16 : 567 - 577
  • [42] Semi-supervised tensor learning for image classification
    Jianguang Zhang
    Yahong Han
    Jianmin Jiang
    Multimedia Systems, 2017, 23 : 63 - 73
  • [43] Semi-supervised Learning for Image Modality Classification
    de Herrera, Alba Garcia Seco
    Markonis, Dimitrios
    Joyseeree, Ranveer
    Schaer, Roger
    Foncubierta-Rodriguez, Antonio
    Mueller, Henning
    MULTIMODAL RETRIEVAL IN THE MEDICAL DOMAIN, MRMD 2015, 2015, 9059 : 85 - 98
  • [44] VideoSSL: Semi-Supervised Learning for Video Classification
    Jing, Longlong
    Parag, Toufiq
    Wu, Zhe
    Tian, Yingli
    Wang, Hongcheng
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1109 - 1118
  • [45] A review of semi-supervised learning for text classification
    Duarte, Jose Marcio
    Berton, Lilian
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9401 - 9469
  • [46] Safe semi-supervised learning for pattern classification
    Ma, Jun
    Yu, Guolin
    Xiong, Weizhi
    Zhu, Xiaolong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [47] Semi-supervised learning for question classification in CQA
    Li, Yiyang
    Su, Lei
    Chen, Jun
    Yuan, Liwei
    NATURAL COMPUTING, 2017, 16 (04) : 567 - 577
  • [48] Integrated Semi-Supervised Model for Learning and Classification
    Bhalla, Vandna
    Chaudhury, Santanu
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 183 - 195
  • [49] SEMI-SUPERVISED LEARNING FOR MARS IMAGERY CLASSIFICATION
    Wang, Wenjing
    Lin, Lilang
    Fan, Zejia
    Liu, Baying
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 499 - 503
  • [50] Semi-supervised learning for photometric supernova classification
    Richards, Joseph W.
    Homrighausen, Darren
    Freeman, Peter E.
    Schafer, Chad M.
    Poznanski, Dovi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (02) : 1121 - 1135