Evolutionary neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors

被引:10
|
作者
Kyngas, J [1 ]
Valjakka, J [1 ]
机构
[1] UNIV JOENSUU,DEPT CHEM,FIN-80101 JOENSUU,FINLAND
来源
关键词
evolutionary neural networks; genetic algorithms; QSAR;
D O I
10.1002/qsar.19960150404
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The evolutionary neural network (ENN) is a new system for modelling multifactor data. The strength of ENN's are that they can extract insignificant predictors, choose the size of the hidden layer and fine tune the parameters needed in training the network. We have used an ENN to predict the biological activities of Dihydrofolate Reductase Inhibitors. As a result, we found that evolutionary neural networks give more accurate predictions than statistical methods and feedforward neural networks.
引用
收藏
页码:296 / 301
页数:6
相关论文
共 50 条
  • [41] Multiple quantitative structure-activity relationships (QSARs) analysis for γ-secretase inhibitors
    Patil, Vaishali
    Masand, Neeraj
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [42] Quantitative structure-activity relationships of some HIV-protease inhibitors
    Gupta, SP
    Babu, MS
    Kaw, N
    JOURNAL OF ENZYME INHIBITION, 1999, 14 (02): : 109 - 123
  • [43] Application of neural networks based on particle swarm algorithm for modeling quantitative structure-activity relationships of herbicides
    Zhang, LP
    Yu, HJ
    Chen, DZ
    Hu, SX
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2004, 32 (12) : 1590 - 1594
  • [44] A hands-on tutorial on quantitative structure-activity relationships using fully expressive graph neural networks
    Kensert, Alexander
    Desmet, Gert
    Cabooter, Deirdre
    ANALYTICA CHIMICA ACTA, 2024, 1331
  • [45] Dihydrofolate reductase inhibitors: a quantitative structure-activity relationship study using 2D-QSAR and 3D-QSAR methods
    Garro Martinez, Juan C.
    Andrada, Matias F.
    Vega-Hissi, Esteban G.
    Garibotto, Francisco M.
    Nogueras, Manuel
    Rodriguez, Ricaurte
    Cobo, Justo
    Enriz, Ricardo D.
    Estrada, Mario R.
    MEDICINAL CHEMISTRY RESEARCH, 2017, 26 (01) : 247 - 261
  • [46] Structure-activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors
    Fatmawati, Sri
    Shimizu, Kuniyoshi
    Kondo, Ryuichiro
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2011, 21 (24) : 7295 - 7297
  • [47] Crystallographic insights into the structure-activity relationships of diazaborine enoyl-ACP reductase inhibitors
    Jordan, Cheryl A.
    Sandoval, Braddock A.
    Serobyan, Mkrtich V.
    Gilling, Damian H.
    Groziak, Michael P.
    Xu, H. Howard
    Vey, Jessica L.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2015, 71 : 1521 - 1530
  • [48] The method of frontal polyhedra for conformationally-nonrigid molecules. Quantitative structure-activity relationship in the series of baker triazines - Dihydrofolate reductase inhibitors
    Khlebnikov A.I.
    Pharmaceutical Chemistry Journal, 1997, 31 (3) : 147 - 154
  • [49] Three-dimensional quantitative structure-activity relationship analysis of a set of plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach
    Parenti, MD
    Pacchioni, S
    Ferrari, AM
    Rastelli, G
    JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (17) : 4258 - 4267
  • [50] Mechanism and structure-activity relationships of norspermidine-based peptidic inhibitors of trypanothione reductase
    Dixon, MJ
    Maurer, RI
    Biggi, C
    Oyarzabal, J
    Essex, JW
    Bradley, M
    BIOORGANIC & MEDICINAL CHEMISTRY, 2005, 13 (14) : 4513 - 4526