BRST operator quantization of generally covariant gauge systems
被引:4
|
作者:
Ferraro, R
论文数: 0引用数: 0
h-index: 0
机构:
UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINAUNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINA
Ferraro, R
[1
]
Sforza, DM
论文数: 0引用数: 0
h-index: 0
机构:
UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINAUNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINA
Sforza, DM
[1
]
机构:
[1] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINA
The BRST generator is realized as a Hermitian nilpotent operator for a finite-dimensional gauge system featuring a quadratic super-Hamiltonian and linear supermomentum constraints. As a result, the emerging ordering for the Hamiltonian constraint is not trivial, because the potential must enter the kinetic term in order to obtain a quantization invariant under scaling. Namely, BRST quantization does not lead to the curvature term used in the literature as a means to get that invariance. The inclusion of the potential in the kinetic term, far from being unnatural, is beautifully justified in light of the Jacobi's principle.
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Gitman, D. M.
Moshin, P. Yu.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Tomsk State Pedagog Univ, Tomsk 634041, RussiaUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Moshin, P. Yu.
Reshetnyak, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Strength Phys & Mat Sci, Lab Non Equilibrium State Theory, Tomsk 634021, RussiaUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil