Little is known about the distribution of ice in the Antarctic Ice Sheet (AIS) during the Last Glacial Maximum (LGM). Whereas marine and terrestrial geological data indicate that the grounded ice advanced to a position close to the continental-shelf break, the total ice volume is unclear. Glacial boundary conditions are potentially important sources of uncertainty, in particular basal friction and climatic boundary conditions. Basal friction exerts a strong control on the large-scale dynamics of the ice sheet and thus affects its size and is not well constrained. Glacial climatic boundary conditions determine the net accumulation and ice temperature and are also poorly known. Here we explore the effect of the uncertainty in both features on the total simulated ice storage of the AIS at the LGM. For this purpose we use a hybrid ice sheet shelf model that is forced with different basal drag choices and glacial background climatic conditions obtained from the LGM ensemble climate simulations of the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). Overall, we find that the spread in the simulated ice volume for the tested basal drag parameterizations is about the same range as for the different general circulation model (GCM) forcings (4 to 6 m sea level equivalent). For a wide range of plausible basal friction configurations, the simulated ice dynamics vary widely but all simulations produce fully extended ice sheets towards the continental-shelf break. More dynamically active ice sheets correspond to lower ice volumes, while they remain consistent with the available constraints on ice extent. Thus, this work points to the possibility of an AIS with very active ice streams during the LGM. In addition, we find that the surface boundary temperature field plays a crucial role in determining the ice extent through its effect on viscosity. For ice sheets of a similar extent and comparable dynamics, we find that the precipitation field determines the total AIS volume. However, precipitation is highly uncertain. Climatic fields simulated by climate models show more precipitation in coastal regions than a spatially uniform anomaly, which can lead to larger ice volumes. Our results strongly support using these paleoclimatic fields to simulate and study the LGM and potentially other time periods like the last interglacial. However, their accuracy must be assessed as well, as differences between climate model forcing lead to a large spread in the simulated ice volume and extension.
机构:
Antarctic Research Centre, Victoria University OfWellingtonAntarctic Research Centre, Victoria University OfWellington
MacKintosh A.
Golledge N.
论文数: 0引用数: 0
h-index: 0
机构:
Antarctic Research Centre, Victoria University OfWellingtonAntarctic Research Centre, Victoria University OfWellington
Golledge N.
Domack E.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Geosciences, Hamilton College, ClintonAntarctic Research Centre, Victoria University OfWellington
Domack E.
论文数: 引用数:
h-index:
机构:
Dunbar R.
论文数: 引用数:
h-index:
机构:
Leventer A.
White D.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Environment and Geography, Macquarie UniversityAntarctic Research Centre, Victoria University OfWellington
White D.
Pollard D.
论文数: 0引用数: 0
h-index: 0
机构:
Earth and Environmental Systems Institute, Pennsylvania State University, University ParkAntarctic Research Centre, Victoria University OfWellington
Pollard D.
Deconto R.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Geosciences, University of Massachusetts, AmherstAntarctic Research Centre, Victoria University OfWellington
Deconto R.
Fink D.
论文数: 0引用数: 0
h-index: 0
机构:
Institute for Environmental Research, ANSTO, MenaiAntarctic Research Centre, Victoria University OfWellington
Fink D.
Zwartz D.
论文数: 0引用数: 0
h-index: 0
机构:
Antarctic Research Centre, Victoria University OfWellingtonAntarctic Research Centre, Victoria University OfWellington
Zwartz D.
Gore D.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Environment and Geography, Macquarie UniversityAntarctic Research Centre, Victoria University OfWellington
Gore D.
Lavoie C.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Geosciences, Hamilton College, ClintonAntarctic Research Centre, Victoria University OfWellington
机构:
Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany
Univ Bremen, MARUM, Bremen, Germany
Kumamoto Univ, Fac Adv Sci & Technol, Dept Earth & Environm Sci, Kumamoto, JapanHelmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany
Gowan, Evan J.
Hinck, Sebastian
论文数: 0引用数: 0
h-index: 0
机构:
Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, GermanyHelmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany
Hinck, Sebastian
Niu, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, GermanyHelmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany
Niu, Lu
Clason, Caroline
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Geog, Durham, EnglandHelmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany