Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization

被引:68
|
作者
Andrei, N. [1 ]
机构
[1] Ctr Adv Modeling & Optimizat, Res Inst Informat, Bucharest, Romania
关键词
Unconstrained optimization; Hybrid conjugate gradient method; Conjugacy condition; Numerical comparisons; CONVERGENCE; MINIMIZATION; DESCENT;
D O I
10.1007/s10957-008-9505-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper a new hybrid conjugate gradient algorithm is proposed and analyzed. The parameter beta (k) is computed as a convex combination of the Polak-RibiSre-Polyak and the Dai-Yuan conjugate gradient algorithms, i.e. beta (k) (N) =(1-theta (k) )beta (k) (PRP) +theta (k) beta (k) (DY). The parameter theta (k) in the convex combination is computed in such a way that the conjugacy condition is satisfied, independently of the line search. The line search uses the standard Wolfe conditions. The algorithm generates descent directions and when the iterates jam the directions satisfy the sufficient descent condition. Numerical comparisons with conjugate gradient algorithms using a set of 750 unconstrained optimization problems, some of them from the CUTE library, show that this hybrid computational scheme outperforms the known hybrid conjugate gradient algorithms.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [31] A HYBRID NONLINEAR CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS
    Kaelo, P.
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (04): : 847 - 859
  • [32] A hybrid conjugate gradient method with descent property for unconstrained optimization
    Jian, Jinbao
    Han, Lin
    Jiang, Xianzhen
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) : 1281 - 1290
  • [33] A MODIFIED PROJECTED CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION PROBLEMS
    Huang, Shuai
    Wan, Zhong
    Deng, Songhai
    ANZIAM JOURNAL, 2013, 54 (03): : 143 - 152
  • [34] An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization
    Zexian Liu
    Hongwei Liu
    Yu-Hong Dai
    Computational Optimization and Applications, 2020, 75 : 145 - 167
  • [35] A q-CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION PROBLEMS
    Lai, Kin Keung
    Mishra, Shashi Kant
    Ram, Bhagwat
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (01): : 57 - 76
  • [36] A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization
    Andrei, Neculai
    APPLIED MATHEMATICS LETTERS, 2007, 20 (06) : 645 - 650
  • [37] A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection
    Abubakar, Auwal Bala
    Kumam, Poom
    Malik, Maulana
    Chaipunya, Parin
    Ibrahim, Abdulkarim Hassan
    AIMS MATHEMATICS, 2021, 6 (06): : 6506 - 6527
  • [38] A new hybrid conjugate gradient algorithm based on the Newton direction to solve unconstrained optimization problems
    Hamel, Naima
    Benrabia, Noureddine
    Ghiat, Mourad
    Guebbai, Hamza
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2531 - 2548
  • [39] A new hybrid conjugate gradient algorithm based on the Newton direction to solve unconstrained optimization problems
    Naima Hamel
    Noureddine Benrabia
    Mourad Ghiat
    Hamza Guebbai
    Journal of Applied Mathematics and Computing, 2023, 69 : 2531 - 2548
  • [40] GLOBAL CONVERGENCE OF AN EFFICIENT HYBRID CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION
    Liu, Jinkui
    Du, Xianglin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 73 - 81