Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures

被引:884
|
作者
Wu, Y
Xiang, J
Yang, C
Lu, W
Lieber, CM [1 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 日本科学技术振兴机构;
关键词
D O I
10.1038/nature02674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substantial effort has been placed on developing semiconducting carbon nanotubes(1-3) and nanowires(4) as building blocks for electronic devices-such as field-effect transistors-that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems(4,5). Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes(1-4,6-8). Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages. Here we report an integrated contact and interconnection solution that overcomes this size constraint through selective transformation of silicon nanowires into metallic nickel silicide (NiSi) nanowires. Electrical measurements show that the single crystal nickel silicide nanowires have ideal resistivities of about 10 muOmega cm and remarkably high failure-current densities, > 10(8) A cm(-2). In addition, we demonstrate the fabrication of nickel silicide/silicon (NiSi/Si) nanowire heterostructures with atomically sharp metal-semiconductor interfaces. We produce field-effect transistors based on those heterostructures in which the source-drain contacts are defined by the metallic NiSi nanowire regions. Our approach is fully compatible with conventional planar silicon electronics and extendable to the 10-nm scale using a crossed-nanowire architecture.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 50 条
  • [22] Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures
    Bratkovsky, A. M.
    REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (02)
  • [23] Depositional characteristics of metal coating on single-crystal TiO2 nanowires
    Wen, BM
    Liu, CY
    Liu, Y
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (25): : 12372 - 12375
  • [24] Fabrication of Sb single-crystal nanowire arrays
    Jia, C
    Jin, CG
    Liu, WF
    Cai, WL
    Yao, LZ
    Li, XG
    ACTA PHYSICO-CHIMICA SINICA, 2004, 20 (03) : 240 - 243
  • [25] Synthesis of Single Crystal Metal Sulfide Nanowires and Nanowire Arrays by Chemical Precipitation in Templates
    Mu, Cheng
    He, Junhui
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (12) : 8191 - 8198
  • [26] Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures
    Seo, M. A.
    Yoo, J.
    Perea, D. E.
    Dayeh, S. A.
    Picraux, S. T.
    Taylor, A. J.
    Prasankumar, R. P.
    XVIIITH INTERNATIONAL CONFERENCE ON ULTRAFAST PHENOMENA, 2013, 41
  • [27] The Novel Semiconductor Nanowire Heterostructures
    JQHu
    YBando
    JHZhan
    DGolberg
    复旦学报(自然科学版), 2007, (05) : 712 - 713
  • [28] Vibrations of single-crystal gold nanorods and nanowires
    Saviot, L.
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [29] Elastic modulus of single-crystal GaN nanowires
    Ni, Hai
    Li, Xiaodong
    Cheng, Guosheng
    Klie, Robert
    JOURNAL OF MATERIALS RESEARCH, 2006, 21 (11) : 2882 - 2887
  • [30] Ultrasmall Single-Crystal Indium Antimonide Nanowires
    Yang, Xunyu
    Wang, Gongming
    Slattery, Peter
    Zhang, Jin Z.
    Li, Yat
    CRYSTAL GROWTH & DESIGN, 2010, 10 (06) : 2479 - 2482