Convergence analysis of Anderson-type acceleration of Richardson's iteration

被引:12
|
作者
Pasini, Massimiliano Lupo [1 ,2 ,3 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37830 USA
[3] 1 Bethel Valley Rd,PO 2008,MS6008, Oak Ridge, TN 37830 USA
基金
美国能源部;
关键词
Anderson acceleration; fixed-point scheme; projection method; Richardson iteration; KRYLOV METHODS;
D O I
10.1002/nla.2241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Anderson extrapolation to accelerate the (stationary) Richardson iterative method for sparse linear systems. Using an Anderson mixing at periodic intervals, we assess how this benefits convergence to a prescribed accuracy. The method, named alternating Anderson-Richardson, has appealing properties for high-performance computing, such as the potential to reduce communication and storage in comparison to more conventional linear solvers. We establish sufficient conditions for convergence, and we evaluate the performance of this technique in combination with various preconditioners through numerical examples. Furthermore, we propose an augmented version of this technique.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] POSITIVITY OF LYAPUNOV EXPONENTS FOR ANDERSON-TYPE MODELS ON TWO COUPLED STRINGS
    Boumaza, Hakim
    Stolz, Guenter
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [42] Integrable Anderson-type impurity in the supersymmetric t-J model
    H. Frahm
    G. Palacios
    Theoretical and Mathematical Physics, 2007, 150 : 288 - 300
  • [43] Two inorganic chains based on the Anderson-type polyanions and transition metals
    Zhang, Peng-Peng
    Peng, Jun
    Tian, Ai-Xiang
    Pang, Hai-Jun
    Chen, Yuan
    Zhu, Min
    Wang, Dan-Dan
    Liu, Ming-Guan
    Wang, Yong-Hui
    JOURNAL OF COORDINATION CHEMISTRY, 2010, 63 (20) : 3610 - 3619
  • [44] Wegner Estimates for Some Random Operators with Anderson-type Surface Potentials
    Yoshihiko Kitagaki
    Mathematical Physics, Analysis and Geometry, 2010, 13 : 47 - 67
  • [45] Integrable Anderson-type impurity in the supersymmetric t-J model
    Frahm, H.
    Palacios, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 150 (02) : 288 - 300
  • [46] Enabling convergence of the iterated penalty Picard iteration with O(1) penalty parameter for incompressible Navier-Stokes via Anderson acceleration
    Rebholz, Leo G.
    Vargun, Duygu
    Xiao, Mengying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387
  • [47] A faster King-Werner-type iteration and its convergence analysis
    Sharma, Janak Raj
    Argyros, Ioannis K.
    Kumar, Sunil
    APPLICABLE ANALYSIS, 2020, 99 (14) : 2526 - 2542
  • [48] Improved convergence of the Arrow-Hurwicz iteration for the Navier-Stokes equation via grad-div stabilization and Anderson acceleration
    Geredeli, Pelin G.
    Rebholz, Leo G.
    Vargun, Duygu
    Zytoon, Ahmed
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 422
  • [49] On the Asymptotic Linear Convergence Speed of Anderson Acceleration Applied to ADMM
    Dawei Wang
    Yunhui He
    Hans De Sterck
    Journal of Scientific Computing, 2021, 88
  • [50] On the Asymptotic Linear Convergence Speed of Anderson Acceleration Applied to ADMM
    Wang, Dawei
    He, Yunhui
    De Sterck, Hans
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)