共 50 条
Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex
被引:4
|作者:
Martens, Louise
[1
,2
]
Kroemer, Nils B.
[2
]
Teckentrup, Vanessa
[2
]
Colic, Lejla
[3
,4
,5
]
Palomero-Gallagher, Nicola
[6
,7
,8
]
Li, Meng
[9
]
Walter, Martin
[1
,2
,3
,4
,9
,10
]
机构:
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
[2] Univ Tubingen, Dept Psychiat & Psychotherapy, D-72076 Tubingen, Germany
[3] Clin Affect Neuroimaging Lab, D-39120 Magdeburg, Germany
[4] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany
[5] Yale Sch Med, Dept Psychiat, New Haven, CT 06511 USA
[6] Res Ctr Julich, Inst Neurosci & Med INM 1, D-52425 Julich, Germany
[7] Rhein Westfal TH Aachen, Med Fac, Dept Psychiat Psychotherapy & Psychosomat, D-52074 Aachen, Germany
[8] Heinrich Heine Univ, C&O Vogt Inst Brain Res, D-40225 Dusseldorf, Germany
[9] Jena Univ Hosp, Dept Psychiat & Psychotherapy, D-07743 Jena, Germany
[10] Ctr Behav Brain Sci, D-39106 Magdeburg, Germany
来源:
关键词:
anterior cingulate cortex;
functional connectivity;
glutamate;
machine learning;
MRS;
MAGNETIC-RESONANCE-SPECTROSCOPY;
MAJOR DEPRESSIVE DISORDER;
HUMAN CEREBRAL-CORTEX;
PARCELLATION;
GABA;
NETWORK;
PROTON;
FMRI;
FINGERPRINTS;
INHIBITION;
D O I:
10.1523/JNEUROSCI.0897-20.2020
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional con-nectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R-2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
引用
收藏
页码:9028 / 9042
页数:15
相关论文