On the (non) existence of symplectic resolutions of linear quotients

被引:9
|
作者
Bellamy, Gwyn [1 ]
Schedler, Travis [2 ]
机构
[1] Univ Glasgow, Univ Gardens, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Imperial Coll, Dept Math, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
symplectic resolution; symplectic smoothing; symplectic reflection algebra; Poisson variety; quotient singularity; McKay correspondence; POISSON DEFORMATIONS; SINGULARITIES; VARIETIES; ALGEBRAS;
D O I
10.4310/MRL.2016.v23.n6.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of symplectic resolutions of quotient singularities V/G, where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form K (sic) S-2 whereK < SL2(C), for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for dim V not equal 4, we classify all symplectically irreducible quotient singularities V/G admitting a projective symplectic resolution, except for at most four explicit singularities, that occur in dimensions at most 10, for which the question of existence remains open.
引用
收藏
页码:1537 / 1564
页数:28
相关论文
共 50 条
  • [21] Symplectic resolutions of quiver varieties
    Bellamy, Gwyn
    Schedler, Travis
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [22] Symplectic resolutions for nilpotent orbits
    Baohua Fu
    Inventiones mathematicae, 2003, 151 : 167 - 186
  • [23] Geometry and topology of symplectic resolutions
    Kaledin, D.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 595 - 628
  • [24] Symplectic resolutions of quiver varieties
    Gwyn Bellamy
    Travis Schedler
    Selecta Mathematica, 2021, 27
  • [25] Symplectic resolutions for nilpotent orbits
    Fu, BH
    INVENTIONES MATHEMATICAE, 2003, 151 (01) : 167 - 186
  • [27] Algebraic symplectic analogues of additive quotients
    Doran, Brent
    Hoskins, Victoria
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (06) : 1591 - 1638
  • [28] The Kirwan map for singular symplectic quotients
    Kiem, YH
    Woolf, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 209 - 230
  • [29] On Orbifold Criteria for Symplectic Toric Quotients
    Farsi, Carla
    Herbig, Hans-Christian
    Seaton, Christopher
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [30] Cohomology of quotients in real symplectic geometry
    Baird, Thomas John
    Heydari, Nasser
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (07): : 3249 - 3276