On matrix characterizations for P-property of the linear transformation in second-order cone linear complementarity problems

被引:2
|
作者
Miao, Xin-He [1 ]
Chen, Jein-Shan [2 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
基金
中国国家自然科学基金;
关键词
Second-order cone linear complementarity problem; P-property; Globally uniquely solvable property; Absolute value equations; VALUE EQUATION SOLUTION; SMOOTHING NEWTON METHOD; MERIT FUNCTIONS; REGULARIZATION METHOD; CONVERGENCE; SOLVABILITY;
D O I
10.1016/j.laa.2020.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The P-property of the linear transformation in second-order cone linear complementarity problems (SOCLCP) plays an important role in checking the globally uniquely solvable (GUS) property due to the work of Gowda et al. However, it is not easy to verify the P-property of the linear transformation, in general. In this paper, we provide matrix characterizations for checking the P-property, which is a new approach different from those in the literature. This is a do-able manipulation, which helps verifications of the P-property and globally uniquely solvable (GUS) property in second-order cone linear complementarity problems. Moreover, using an equivalence relation to the second-order cone linear complementarity problem, we study some sufficient and necessary conditions for the unique solution of the absolute value equations associated with second-order cone (SOCAVE). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 294
页数:24
相关论文
共 50 条
  • [41] Second-order results for linear problems
    不详
    AVERAGE-CASE ANALYSIS OF NUMERICAL PROBLEMS, 2000, 1733 : 33 - 66
  • [42] A regularization method for the second-order cone complementarity problem with the Cartesian P0-property
    Pan, Shaohua
    Chen, Jein-Shan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (04) : 1475 - 1491
  • [43] A KRYLOV SUBSPACE METHOD FOR LARGE-SCALE SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEM
    Zhang, Lei-Hong
    Yang, Wei Hong
    Shen, Chungen
    Li, Ren-Cang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A2046 - A2075
  • [44] An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem
    Wang, Xiang
    Li, Xing
    Zhang, Lei-Hong
    Li, Ren-Cang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1608 - 1629
  • [45] Linear Complementarity Problems on Extended Second Order Cones
    Sándor Zoltán Németh
    Lianghai Xiao
    Journal of Optimization Theory and Applications, 2018, 176 : 269 - 288
  • [46] DISTRIBUTION PROPERTY OF A LINEAR RECURRENCE OF SECOND-ORDER
    KUIPERS, L
    SHIUE, JS
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (01): : 6 - &
  • [47] An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem
    Xiang Wang
    Xing Li
    Lei-Hong Zhang
    Ren-Cang Li
    Journal of Scientific Computing, 2019, 79 : 1608 - 1629
  • [48] Linear Complementarity Problems on Extended Second Order Cones
    Nemeth, Sandor Zoltan
    Xiao, Lianghai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (02) : 269 - 288
  • [49] Generating linear, semidefinite, and second-order cone optimization problems for numerical experiments
    Mohammadisiahroudi, Mohammadhossein
    Fakhimi, Ramin
    Augustino, Brandon
    Terlaky, Tamas
    OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (04): : 725 - 755
  • [50] Anderson accelerating the preconditioned modulus approach for linear complementarity problems on second-order cones
    Zhizhi Li
    Huai Zhang
    Yimin Jin
    Le Ou-Yang
    Numerical Algorithms, 2022, 91 : 803 - 839