Exponential inequalities for weighted sums of bounded random variables

被引:1
|
作者
Rio, Emmanuel [1 ]
机构
[1] CNRS, UMR 8100, Lab Math Versailles, F-75700 Paris, France
关键词
Hoeffding's inequality; Bernstein's inequality; Bennett's inequality; Deviation inequalities; Weighted sums; PROBABILITY-INEQUALITIES;
D O I
10.1214/ECP.v20-4204
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we give new exponential inequalities for weighted sums of real-valued independent random variables bounded on the right. Our results are extensions of the results of Bennett (1962) to weighted sums
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Weighted sums of negatively associated random variables
    Liang, HY
    Baek, JI
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (01) : 21 - 31
  • [32] Complete convergence for weighted sums of random variables
    Sung, Soo Hak
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (03) : 303 - 311
  • [33] Convergence of weighted sums for dependent random variables
    Liang, HY
    Zhang, DX
    Baek, JI
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 883 - 894
  • [34] A Note on Weighted Sums of Associated Random Variables
    Cagin, T.
    Oliveira, P. E.
    ACTA MATHEMATICA HUNGARICA, 2014, 143 (01) : 96 - 106
  • [35] On the Accuracy of the Exponential Approximation to Random Sums of Alternating Random Variables
    Shevtsova, Irina
    Tselishchev, Mikhail
    MATHEMATICS, 2020, 8 (11) : 1 - 11
  • [36] Peakedness for weighted sums of symmetric random variables
    Zhao, Peng
    Chan, Ping Shing
    Ng, Hon Keung Tony
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (05) : 1737 - 1743
  • [37] On the strong convergence for weighted sums of random variables
    Sung, Soo Hak
    STATISTICAL PAPERS, 2011, 52 (02) : 447 - 454
  • [38] ON ORDERINGS BETWEEN WEIGHTED SUMS OF RANDOM VARIABLES
    Mao, Tiantian
    Pan, Xiaoqing
    Hu, Taizhong
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2013, 27 (01) : 85 - 97
  • [39] On the strong convergence for weighted sums of random variables
    Soo Hak Sung
    Statistical Papers, 2011, 52 : 447 - 454
  • [40] Weighted sums of subexponential random variables and their maxima
    Chen, YQ
    Ng, KW
    Tang, QH
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 510 - 522