Cryogenic considerations for superconducting magnet design for the material plasma exposure experiment

被引:1
|
作者
Duckworth, R. C. [1 ]
Demko, J. A. [2 ]
Lumsdaine, A. [1 ]
Rapp, J. [1 ]
Bjorholm, T. [1 ]
Goulding, R. H. [1 ]
Caughman, J. B. O. [1 ]
McGinnis, W. D. [1 ]
机构
[1] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37831 USA
[2] LeTourneau Univ, Dept Mech Engn, Longview, TX 75607 USA
来源
关键词
HELICON PLASMA; ION; FUTURE;
D O I
10.1088/1757-899X/101/1/012143
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 10(20) to 10(21) m(-3). Heat fluxes on target diverters could reach 20 MW/m(2). To generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5-m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations is presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] SUPERCONDUCTING SUPER COLLIDER 5T DIPOLE MAGNET CRYOGENIC DESIGN.
    Niemann, R.C.
    Carson, J.A.
    Edwards, H.T.
    Engler, N.H.
    Gonczy, J.D.
    Hanft, R.W.
    Lundy, R.A.
    Mantsch, P.M.
    McInturff, A.D.
    Nicol, T.H.
    Powers, R.J.
    Remsbottom, R.H.
    Rode, C.H.
    Schmidt, E.E.
    Szymulanski, A.
    IEEE Transactions on Magnetics, 1984, MAG-21 (02)
  • [32] High temperature Superconducting Space Experiment II (HTSSE II) cryogenic design
    Kawecki, TG
    Chappie, SS
    Mahony, DR
    CRYOGENICS, 1996, 36 (10) : 741 - 752
  • [33] SUPERCONDUCTING MAGNET SYSTEM AND CRYOGENIC EQUIPMENT OF MOLECULAR TRITIUM CIRCULATION SOURCE FOR ELECTRON ANTINEUTRINO MASS EXPERIMENT
    SEKACHEV, IV
    BELESEV, AI
    BLEULE, AI
    GERASKIN, EV
    GOLUBEV, NA
    KAZACHENKO, OV
    LOBASHEV, VM
    OVCHINNIKOV, VM
    YARIKIN, IE
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (04) : 1946 - 1949
  • [34] The Material Plasma Exposure eXperiment MPEX: pre-design, development and testing of source concept
    Rapp, J.
    Biewer, T. M.
    Bigelow, T.
    Caughman, J. B. O.
    Duckworth, R.
    Giuliano, D.
    Goulding, R. H.
    Hillis, D. L.
    Howard, R.
    Ellis, R. J.
    Lessard, T.
    Lore, J. D.
    Lumsdaine, A.
    Martin, E.
    McGinnis, W. D.
    Meitner, S. J.
    Owen, L. W.
    Ray, H.
    Shaw, G.
    Varma, V.
    2015 IEEE 26TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2015,
  • [35] Experimental Advanced Superconducting Tokamak/material and plasma evaluation system material migration experiment
    Wampler, W. R.
    Pitts, R. A.
    Carpentier-Chouchana, S.
    Stangeby, P. C.
    Ding, F.
    Mao, H. M.
    Wang, W. Z.
    Qian, J. P.
    Gong, X.
    Luo, G-N
    PHYSICA SCRIPTA, 2014, T159
  • [36] Cryogenic characteristics of the ATLAS Barrel Toroid superconducting magnet
    Pengo, R.
    Barth, K.
    Delruelle, N.
    Pezzetti, M.
    Pirotte, O.
    Passardi, G.
    Dudarev, A.
    ten Kate, H.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2008, 18 (02) : 379 - 382
  • [37] CRYOGENIC MATERIALS ASPECTS OF THE ITER SUPERCONDUCTING MAGNET SYSTEM
    FILATOV, OG
    KOSTENKO, AI
    CRYOGENICS, 1992, 32 : 361 - 368
  • [38] Effect of helium convection on cryogenic stability of superconducting magnet
    Tatsumi, Y
    Nishijima, S
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 1760 - 1763
  • [39] Cryogenic DC/DC Converter for Superconducting Magnet Application
    Elwakeel, Abdelrahman
    McNeill, Neville
    Pena-Alzola, Rafael
    Zhang, Min
    Yuan, Weijia
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
  • [40] Design and Experiment of Thyristor Drive Circuit for CRATF Superconducting Magnet Power Supply
    Li, Wenhao
    Yang, Yalong
    Jiang, Li
    Gao, Ge
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 187 - 192