Progress and opportunities for inertial fusion energy in Europe

被引:13
|
作者
Tikhonchuk, V. T. [1 ,2 ]
机构
[1] Univ Bordeaux, CEA, CNRS, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[2] Czech Acad Sci, Inst Phys, ELI Beamlines, Dolni Brezany 25241, Czech Republic
关键词
inertial confinement fusion; laser plasma interaction; fusion ignition and burn;
D O I
10.1098/rsta.2020.0013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, I consider the motivations, recent results and perspectives for the inertial confinement fusion (ICF) studies in Europe. The European approach is based on the direct drive scheme with a preference for the central ignition boosted by a strong shock. Compared to other schemes, shock ignition offers a higher gain needed for the design of a future commercial reactor and relatively simple and technological targets, but implies a more complicated physics of laser-target interaction, energy transport and ignition. European scientists are studying physics issues of shock ignition schemes related to the target design, laser plasma interaction and implosion by the code developments and conducting experiments in collaboration with US and Japanese physicists, providing access to their installations Omega and Gekko XII. The ICF research in Europe can be further developed only if European scientists acquire their own academic laser research facility specifically dedicated to controlled fusion energy and going beyond ignition to the physical, technical, technological and operational problems related to the future fusion power plant. Recent results show significant progress in our understanding and simulation capabilities of the laser plasma interaction and implosion physics and in our understanding of material behaviour under strong mechanical, thermal and radiation loads. In addition, growing awareness of environmental issues has attracted more public attention to this problem and commissioning at ELI Beamlines the first high-energy laser facility with a high repetition rate opens the opportunity for qualitatively innovative experiments. These achievements are building elements for a new international project for inertial fusion energy in Europe. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Target physics for inertial fusion energy
    MartinezVal, JM
    Velarde, G
    Eliezer, S
    CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, 1997, : 43 - 65
  • [32] PROGRESS OF INERTIAL CONFINEMENT FUSION RESEARCH IN JAPAN.
    Yamanaka, C.
    Energy developments in Japan, 1980, 2 (04): : 319 - 331
  • [33] Recent progress in inertial confinement fusion in the United States
    McCrory, RL
    NUCLEAR FUSION, 2004, 44 (12) : S123 - S128
  • [34] EXPERIMENTAL PROGRESS IN MAGNETIZED LINER INERTIAL FUSION (MAGLIF)
    Gomez, M. R.
    Slutz, S. A.
    Sefkow, A. B.
    Geissel, M.
    Harvey-Thompson, A. J.
    Peterson, K. J.
    Hansen, S. B.
    Hahn, K. D.
    Knapp, P. F.
    Schmit, P. F.
    Ruiz, C. L.
    Sinars, D. B.
    Awe, T. J.
    Harding, E. C.
    Jennings, C. A.
    Smith, I. C.
    Rovang, D. C.
    Chandler, G. A.
    Cuneo, M. E.
    Lamppa, D. C.
    Martin, M. R.
    McBride, R. D.
    Porter, J. L.
    Rochau, G. A.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [35] Progress in the pulsed power Inertial Confinement Fusion program
    Quintenz, JP
    Matzen, MK
    Mehlhorn, TA
    FUSION ENERGY 1996, VOL 3, 1997, : 95 - 103
  • [36] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Jacobs-Perkins, D. W.
    Knauer, J. P.
    Marshall, F. J.
    McKenty, P. W.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Short, R. W.
    Skupsky, S.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [37] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Froula, D. H.
    Glebov, V. Yu
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Knauer, J. P.
    Loucks, S. J.
    Marozas, J. A.
    Marshall, F. J.
    McKenty, P. W.
    Michel, T.
    Nilson, P. M.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Shmayda, W. T.
    Short, R. W.
    Shvarts, D.
    Skupsky, S.
    Soures, J. M.
    Stoeckl, C.
    Theobald, W.
    Yaakobi, B.
    Frenje, J. A.
    Casey, D. T.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    Padalino, S. J.
    Fletcher, K. A.
    Celliers, P. M.
    Collins, G. W.
    Robey, H. F.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [38] Monitoring health in Europe: opportunities, challenges, and progress
    McKee, M
    Ryan, J
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2003, 13 : 1 - 4
  • [39] Strategic Opportunities in Fusion Energy
    Howard Hornfeld
    Journal of Fusion Energy, 2016, 35 : 102 - 106
  • [40] Strategic Opportunities in Fusion Energy
    Hornfeld, Howard
    JOURNAL OF FUSION ENERGY, 2016, 35 (01) : 102 - 106