First-principles, quantum-mechanical simulations of electron solvation by a water cluster

被引:55
|
作者
Herbert, John M. [1 ]
Head-Gordon, Martin [1 ]
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
关键词
ab initio molecular dynamics; hydrated electron; photoelectron spectroscopy;
D O I
10.1073/pnas.0603679103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite numerous experiments and static electronic structure calculations, the nature of hydrated-electron clusters, (H2O)(n)(-), remains poorly understood. Here, we introduce a hybrid ab initio molecular dynamics scheme, balancing accuracy against feasibility, to simulate vibrational and photoelectron spectra of (H2O)(n)(-), treating all electrons quantum-mechanically. This methodology provides a computational tool for understanding the spectra of weakly bound and supramolecular anions and for elucidating the fingerprint of dynamics in these spectra. Simulations of (H2O)(4)(-) provide quantitative agreement with experimental spectra and furnish direct evidence of the nonequilibrium nature of the cluster ensemble that is probed experimentally. The simulations also provide an estimate of the cluster temperature (T approximate to 150-200 K) that is not available from experiment alone. The "double acceptor" electron-binding motif is found to be highly stable with respect to thermal fluctuations, even at T = 300 K, whereas the extra electron stabilizes what would otherwise be unfavorable water configurations.
引用
收藏
页码:14282 / 14287
页数:6
相关论文
共 50 条
  • [21] First-principles simulations of aqueous solutions
    Schwegler, Eric
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [22] First-principles simulations of ferroelectric oxides
    Postnikov, AV
    Eglitis, RI
    Caciuc, V
    Borstel, G
    FERROELECTRICS, 2000, 236 (1-4) : 47 - 58
  • [23] First-principles simulations of dislocation cores
    Woodward, C
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 400 : 59 - 67
  • [24] First-principles simulations of graphitic nanoribbons
    Mintmire, John W.
    Li, Junwen
    Gunlycke, Daniel
    White, Carter T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [25] First-principles simulations of molecular electronics
    Pantelides, ST
    Di Ventra, M
    Lang, ND
    MOLECULAR ELECTRONICS II, 2002, 960 : 177 - 183
  • [26] First-principles simulations of heat transport
    Puligheddu, Marcello
    Gygi, Francois
    Galli, Giulia
    PHYSICAL REVIEW MATERIALS, 2017, 1 (06):
  • [27] First-Principles Simulations of Nanoscale Transistors
    Blom, Anders
    Pozzoni, Umberto Martinez
    Markussen, Troels
    Stokbro, Kurt
    2015 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD), 2015, : 52 - 55
  • [28] First-principles simulations of liquid ZnTe
    Jain, M
    Godlevsky, VV
    Derby, JJ
    Chelikowsky, JR
    PHYSICAL REVIEW B, 2002, 65 (03) : 1 - 7
  • [29] First-principles protein folding simulations
    Okamoto, Y
    MOLECULAR SIMULATION, 2000, 24 (4-6) : 351 - 368
  • [30] First-principles simulations of water: Recent progress and open challenges.
    Galli, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U718 - U718