Robust designs for Fingerprint Feature Extraction CNN with Von Neumann Neighborhood

被引:2
|
作者
Wang, Hui [1 ]
Min, LeQuan [1 ]
Liu, JinZhu [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
D O I
10.1109/CIS.2008.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. The robust designs for CNN templates are important issue for the practical applications of the CNN. The fingerprint feature extraction (FFE) CNNs are two kinds of CNNs, which are able to extract the endings and bifurcations in patterns, two important features in a fingerprint image. This paper establishes two theorems for designing the robustness templates of these two kinds of FFE CNNs respectively. These two theorems provide the template parameter inequalities to determine parameter intervals for implementing the corresponding functions. Simulation result shows the effectiveness of the proposed methodology.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [11] Robust reference point detection using gradient of fingerprint direction and feature extraction method
    Park, J
    Ko, H
    COMPUTATIONAL SCIENCE - ICCS 2003, PT IV, PROCEEDINGS, 2003, 2660 : 1089 - 1099
  • [12] Fingerprint Feature Extraction for Indoor Localization
    Jiang, Jehn-Ruey
    Subakti, Hanas
    Liang, Hui-Sung
    SENSORS, 2021, 21 (16)
  • [13] A Novel Method For Fingerprint Feature Extraction
    Kaur, Ramandeep
    Sandhu, Parvinder S.
    Kamra, Amit
    2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 1 - 5
  • [14] Transformer based Fingerprint Feature Extraction
    Tandon, Saraansh
    Namboodiri, Anoop
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 870 - 876
  • [15] Fingerprint Feature Extraction by Combining Texture, Minutiae, and Frequency Spectrum Using Multi-Task CNN
    Takahashi, Ai
    Koda, Yoshinori
    Ito, Koichi
    Aoki, Takafumi
    IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), 2020,
  • [16] FINGERPRINT FEATURE EXTRACTION AND CLASSIFICATION BY LEARNING THE CHARACTERISTICS OF FINGERPRINT PATTERNS
    Kulkarni, Siddhivinayak
    NEURAL NETWORK WORLD, 2011, 21 (03) : 219 - 226
  • [17] A robust audio fingerprint extraction algorithm
    Lebosse, Jerome
    Brun, Luc
    Pailles, Jean Claude
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PATTERN RECOGNITION, AND APPLICATIONS, 2007, : 269 - +
  • [18] Automatic Feature Extraction using CNN for Robust Active One-shot Scanning
    Sagawa, Ryusuke
    Shiba, Yuki
    Hirukawa, Takuto
    Ono, Satoshi
    Kawasaki, Hiroshi
    Furukawa, Ryo
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 234 - 239
  • [19] Robust Ship Detection in Infrared Images through Multiscale Feature Extraction and Lightweight CNN
    Miao, Rui
    Jiang, Hongxu
    Tian, Fangzheng
    SENSORS, 2022, 22 (03)
  • [20] Realization of Boolean functions via CNN with von Neumann neighborhoods
    Chen, Fangyue
    He, Guolong
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (05): : 1389 - 1403