On integer domination in graphs and vizing-like problems

被引:0
|
作者
Bresar, Bostjan
Henning, Michael A.
Klavzar, Sandi
机构
[1] Univ Maribor, FEECS, SLO-2000 Maribor, Slovenia
[2] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[3] Univ Maribor, Dept Math & Comp Sci, PeF, SLO-2000 Maribor, Slovenia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2006年 / 10卷 / 05期
关键词
{k}-dominating function; integer domination; cartesian product; Vizing's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of {k}-dominating functions in graphs (or integer domination as we shall also say) started by Domke, Hedetniemi, Laskar, and Fricke [5]. For k >= 1 an integer, a function f : V (G) --> {0,1,..., k} defined on the vertices of a graph G is called a {k}-dominating function if the sum of its function values over any closed neighborhood is at least k. The weight of a {k}-dominating function is the sum of its function values over all vertices. The {k}-domination number of G is the minimum weight of a {k}-dominating function of G. We study the {k}-domination number on the Cartesian product of graphs, mostly on problems related to the famous Vizing's conjecture. A connection between the {k}-domination number and other domination type parameters is also studied.
引用
收藏
页码:1317 / 1328
页数:12
相关论文
共 50 条
  • [31] Vizing's conjecture for chordal graphs
    Aharoni, Ron
    Szabo, Tibor
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1766 - 1768
  • [32] Turan problems for integer-weighted graphs
    Füredi, Z
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2002, 40 (04) : 195 - 225
  • [33] Conflict graphs in solving integer programming problems
    Atamtürk, A
    Nemhauser, GL
    Savelsbergh, MWP
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 121 (01) : 40 - 55
  • [34] Domination and Cut Problems on Chordal Graphs with Bounded Leafage
    Galby, Esther
    Marx, Daniel
    Schepper, Philipp
    Sharma, Roohani
    Tale, Prafullkumar
    ALGORITHMICA, 2024, 86 (05) : 1428 - 1474
  • [35] DOMINATION PROBLEMS ON P5-FREE GRAPHS
    Lin, Min Chih
    Mizrahi, Michel J.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2014, 48 (05): : 541 - 549
  • [36] A UNIFIED APPROACH TO DOMINATION PROBLEMS ON INTERVAL-GRAPHS
    RAMALINGAM, G
    RANGAN, CP
    INFORMATION PROCESSING LETTERS, 1988, 27 (05) : 271 - 274
  • [37] APX-hardness of domination problems in circle graphs
    Damian, M
    Pemmaraju, SV
    INFORMATION PROCESSING LETTERS, 2006, 97 (06) : 231 - 237
  • [38] r-domination problems on homogeneously orderable graphs
    Dragan, FF
    Nicolai, F
    NETWORKS, 1997, 30 (02) : 121 - 131
  • [39] Approximation hardness of domination problems on generalized convex graphs
    Wang, Po Yuan
    Kitamura, Naoki
    Izumi, Taisuke
    Masuzawa, Toshimitsu
    THEORETICAL COMPUTER SCIENCE, 2025, 1028
  • [40] A Survey on Variant Domination Problems in Geometric Intersection Graphs
    Xu, Shou-Jun
    Wang, Cai-Xia
    Yang, Yu
    PARALLEL PROCESSING LETTERS, 2024, 34 (01)