Fault Diagnosis of Rolling Bearings Based on an Improved Stack Autoencoder and Support Vector Machine

被引:145
|
作者
Cui, Mingliang [1 ]
Wang, Youqing [1 ]
Lin, Xinshuang [1 ]
Zhong, Maiying [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Rolling bearings; Support vector machines; Fault diagnosis; Training; Vibrations; Deep learning; rolling bearing; SVM; FD-SAE;
D O I
10.1109/JSEN.2020.3030910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, autoencoder has been widely used for the fault diagnosis of mechanical equipment because of its excellent performance in feature extraction and dimension reduction; however, the original autoencoder only has limited feature extraction ability due to the lack of label information. To solve this issue, this study proposes a feature distance stack autoencoder (FD-SAE) for rolling bearing fault diagnosis. Compared with the existing methods, FD-SAE has stronger feature extraction ability and faster network convergence speed. By analyzing the characteristics of original rolling bearing data, it is found that there are evident differences between normal data and faulty data. Therefore, a simple linear support vector machine (SVM) is used to classify normal data and faulty data, and then the proposed FD-SAE is used for fault classification. The novel combination of SVM and FD-SAE has simple structure and little computational complexity. Finally, the proposed method is verified on the rolling bearing data set of Case Western Reserve University (CWRU).
引用
收藏
页码:4927 / 4937
页数:11
相关论文
共 50 条
  • [31] Fault diagnosis approach for rolling bearing based on support vector machine and soft morphological filters
    Yu, Xiangtao
    Chu, Fulei
    Hao, Rujiang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (07): : 75 - 80
  • [32] A Method for Rolling Bearing Fault Diagnosis Based on the Power Spectrum Analysis and Support Vector Machine
    Tian Guishuang
    Wang, Shaoping
    Zhang, Chao
    2012 10TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2012, : 546 - 549
  • [33] Rolling Bearing Fault Diagnosis and Prediction Method based on Gray Support Vector Machine Model
    Wang, Jianhua
    Kang, Taiti
    2015 International Conference on Computer Science and Mechanical Automation (CSMA), 2015, : 313 - 317
  • [34] A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree
    Li, Yongbo
    Xu, Minqiang
    Wei, Yu
    Huang, Wenhu
    MEASUREMENT, 2016, 77 : 80 - 94
  • [35] Fault diagnosis based on support vector machine ensemble
    Li, Y
    Cai, YZ
    Yin, RP
    Xu, XM
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3309 - 3314
  • [36] Intelligent fault diagnosis based on support vector machine
    Xia Fangfang
    Yuan Long
    Zhao Xiucai
    He Wenan
    Jia Ruisheng
    PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 1, 2015, : 201 - 205
  • [37] Transformer Fault Diagnosis Based on Support Vector Machine
    Zhang, Yan
    Zhang, Bide
    Yuan, Yuchun
    Pei, Zichun
    Wang, Yan
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 6, 2010, : 405 - 408
  • [38] An improved EWT method for fault diagnosis of rolling bearings
    Sheng, Jiajiu
    Chen, Guo
    Kang, Yuxiang
    He, Zhiyuan
    Wang, Hao
    Wei, Xunkai
    Liu, Chuanyu
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (09):
  • [39] Analysis and Diagnosis of Coal Shearer Machine Fault Based on Improved Support Vector Theory
    Zhang, X.
    Ma, X. M.
    Yang, Z. S.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 231 - 233
  • [40] Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis
    Wang, Zhenya
    Yao, Ligang
    Cai, Yongwu
    Zhang, Jun
    RENEWABLE ENERGY, 2020, 155 : 1312 - 1327