Approximate Storage in Solid-State Memories

被引:82
|
作者
Sampson, Adrian [1 ]
Nelson, Jacob [1 ]
Strauss, Karin [1 ]
Ceze, Luis [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
ACM TRANSACTIONS ON COMPUTER SYSTEMS | 2014年 / 32卷 / 03期
基金
美国国家科学基金会;
关键词
Reliability; Performance; Approximate computing; storage; error tolerance; phase-change memory;
D O I
10.1145/2644808
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Memories today expose an all-or-nothing correctness model that incurs significant costs in performance, energy, area, and design complexity. But not all applications need high-precision storage for all of their data structures all of the time. This article proposes mechanisms that enable applications to store data approximately and shows that doing so can improve the performance, lifetime, or density of solid-state memories. We propose two mechanisms. The first allows errors in multilevel cells by reducing the number of programming pulses used to write them. The second mechanism mitigates wear-out failures and extends memory endurance by mapping approximate data onto blocks that have exhausted their hardware error correction resources. Simulations show that reduced-precision writes in multilevel phase-change memory cells can be 1.7x faster on average and using failed blocks can improve array lifetime by 23% on average with quality loss under 10%.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] SOLID-STATE MEMORIES AND MICROPROCESSORS - WHERE WE STAND TODAY
    NOYCE, RN
    AUTOMOTIVE ENGINEERING, 1974, 82 (11): : 35 - 36
  • [22] Storage of hyperentanglement in a solid-state quantum memory
    Tiranov, Alexey
    Lavoie, Jonathan
    Ferrier, Alban
    Goldner, Philippe
    Verma, Varun B.
    Nam, Sae Woo
    Mirin, Richard P.
    Lita, Adriana E.
    Marsili, Francesco
    Herrmann, Harald
    Silberhorn, Christine
    Gisin, Nicolas
    Afzelius, Mikael
    Bussieres, Felix
    OPTICA, 2015, 2 (04): : 279 - 287
  • [23] Accurately judging endurance for solid-state storage
    Drossel, G
    EDN, 2006, 51 (02) : 67 - 68
  • [24] Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics
    William Osborn
    Tippawan Markmaitree
    Leon L. Shaw
    Ruiming Ren
    Jianzhi Hu
    Ja Hun Kwak
    Zhenguo Yang
    JOM, 2009, 61 : 45 - 51
  • [25] Solid-State Hydrogen Storage: Storage Capacity, Thermodynamics, and Kinetics
    Osborn, William
    Markmaitree, Tippawan
    Shaw, Leon L.
    Ren, Ruiming
    Hu, Jianzhi
    Kwak, Ja Hun
    Yang, Zhenguo
    JOM, 2009, 61 (04) : 45 - 51
  • [26] APPROXIMATE CALCULATION OF LIMITING SOLUBILITY FOR ORGANIC SUBSTANCES IN SOLID-STATE
    KITAIGOR.AI
    YAKUSHEV.LV
    SOVIET PHYSICS SOLID STATE,USSR, 1972, 13 (08): : 1998 - &
  • [27] Electronic Noise Considerations for Designing Integrated Solid-State Quantum Memories
    Huang, Tzu-Yung
    Hopper, David A.
    Omirzakhov, Kaisarbek
    Idjadi, Mohamad Hossein
    Breitweiser, S. Alexander
    Aflatouni, Firooz
    Bassett, Lee C.
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [28] Review of emerging new solid-state non-volatile memories
    Fujisaki, Yoshihisa
    Japanese Journal of Applied Physics, 2013, 52 (4 PART 1)
  • [29] Review of Emerging New Solid-State Non-Volatile Memories
    Fujisaki, Yoshihisa
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (04)
  • [30] Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage
    Xu, Yaohui
    Li, Yuting
    Gao, Liangjuan
    Liu, Yitao
    Ding, Zhao
    NANOMATERIALS, 2024, 14 (12)