Proximinality in Subspaces of c0

被引:15
|
作者
Godefroy, G [1 ]
Indumathi, V [1 ]
机构
[1] Univ Paris 06, Equipe Anal, F-75252 Paris 05, France
关键词
D O I
10.1006/jath.1999.3382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a normed linear space X is a R(1) space if the following holds: If Y is a closed subspace of finite codimension in X and every hyperplane containing Iis proximinal in X then Y is proximinal in X. In this paper we show that any closed subspace of c(0) is a R(1) space. (C) 1999 Academic Press.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 50 条
  • [31] Predictions for Ξb- → π-(DS-) ΞC0 (2790) (ΞC0(2815) and Ξb- → (v)over-bar ll ΞC0(2790) (ΞC0(2815)
    Pavao, R. P.
    Liang, Wei-Hong
    Nieves, J.
    Oset, E.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (04):
  • [32] OPERATORS ON C0(L, X) WHOSE RANGE DOES NOT CONTAIN c0
    Talponen, Jarno
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 515 - 520
  • [33] Generic unfoldings with the same bifurcation diagram which are not (C0,C0)-equivalent
    Annabi, H
    Annabi, ML
    Roussarie, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) : 1419 - 1428
  • [34] AUTOMATIC CONTINUITY AND C0(Ω)-LINEARITY OF LINEAR MAPS BETWEEN C0(Ω)-MODULES
    Leung, Chi-Wai
    Ng, Chi-Keung
    Wong, Ngai-Ching
    JOURNAL OF OPERATOR THEORY, 2012, 67 (01) : 3 - 20
  • [35] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [36] Study of Ωc0 and Ωc*0 baryons at Belle
    Solovieva, E.
    Chistov, R.
    Adachi, I.
    Aihara, H.
    Arinstein, K.
    Aushev, T.
    Bakich, A. M.
    Balagura, V.
    Bitenc, U.
    Bondar, A.
    Bracko, M.
    Brodzicka, J.
    Browder, T. E.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Cho, I. -S.
    Choi, S. -K.
    Choi, Y.
    Dalseno, J.
    Danilov, M.
    Dash, M.
    Eidelman, S.
    Ha, H.
    Hayasaka, K.
    Hazumi, M.
    Heffernan, D.
    Hoshi, Y.
    Hou, W. -S.
    Hsiung, Y. B.
    Hyun, H. J.
    Inami, K.
    Ishikawa, A.
    Ishino, H.
    Itoh, R.
    Iwasaki, M.
    Iwasaki, Y.
    Kah, D. H.
    Kang, J. H.
    Katayama, N.
    Kawai, H.
    Kawasaki, T.
    Kichimi, H.
    Kim, H. J.
    Kim, H. O.
    Kim, Y. I.
    Kim, Y. J.
    Kinoshita, K.
    Korpar, S.
    Krizan, P.
    PHYSICS LETTERS B, 2009, 672 (01) : 1 - 5
  • [37] ON BANACH IDEALS SATISFYING c0(A(X, Y)) = A(X, c0(Y))
    Delgado, J. M.
    Pineiro, C.
    MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 130 - 140
  • [38] Generic unfoldings with the same bifurcation diagram which are not (C0, C0)- equivalent
    Annabi, H.
    Annabi, M.L.
    Roussarie, R.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (03): : 1419 - 1428
  • [39] Smooth functions on c0
    Hajek, P
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 104 (1) : 17 - 27
  • [40] ON COARSE EMBEDDINGS INTO C0(Γ)
    Hajek, Petr
    Schlumprecht, Thomas
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (01): : 211 - 222