Proximinality in Subspaces of c0

被引:15
|
作者
Godefroy, G [1 ]
Indumathi, V [1 ]
机构
[1] Univ Paris 06, Equipe Anal, F-75252 Paris 05, France
关键词
D O I
10.1006/jath.1999.3382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a normed linear space X is a R(1) space if the following holds: If Y is a closed subspace of finite codimension in X and every hyperplane containing Iis proximinal in X then Y is proximinal in X. In this paper we show that any closed subspace of c(0) is a R(1) space. (C) 1999 Academic Press.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 50 条
  • [1] Strong proximinality of exposed faces of C0(T)
    Prakash, N.
    Sangeetha, K. V.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2877 - 2888
  • [2] Subspaces of c0(N) and Lipschitz isomorphisms
    Godefroy, G
    Kalton, N
    Lancien, G
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) : 798 - 820
  • [3] Isomorphisms from Extremely Regular Subspaces of C0(K) into C0 (S, X) Spaces
    Cerpa-Torres, Manuel Felipe
    Rincon-Villamizar, Michael A.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2019, 2019
  • [4] On subspaces of c0 and extension of operators into C(K)-spaces
    Kalton, NJ
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 313 - 328
  • [5] HYPERINVARIANT SUBSPACES OF OPERATORS OF CLASS C0(N)
    UCHIYAMA, M
    ACTA SCIENTIARUM MATHEMATICARUM, 1977, 39 (1-2): : 179 - 184
  • [6] Banach Spaces Which are Isometric to Subspaces of c0(Γ)
    Li Xin Cheng
    Jian Jian Wang
    Acta Mathematica Sinica, English Series, 2021, 37 : 1171 - 1178
  • [7] Banach Spaces Which are Isometric to Subspaces of c0(Γ)
    Li Xin CHENG
    Jian Jian WANG
    ActaMathematicaSinica,EnglishSeries, 2021, (08) : 1171 - 1178
  • [8] Banach Spaces Which are Isometric to Subspaces of c0(Γ)
    Cheng, Li Xin
    Wang, Jian Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1171 - 1178
  • [9] INACCESSIBLE INVARIANT SUBSPACES OF CERTAIN C0 OPERATORS
    DAUGHTRY, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (01) : 51 - 55
  • [10] ON SOME SUBSPACES OF L1 AND C0
    LINDENST.J
    BULLETIN OF THE RESEARCH COUNCIL OF ISRAEL, 1961, F 10 (02): : 74 - &