Distribution-free consistency of kernel non-parametric M-estimators

被引:2
|
作者
Kozek, AS
Pawlak, M
机构
[1] Macquarie Univ, Dept Stat, Sydney, NSW 2109, Australia
[2] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1016/S0167-7152(02)00106-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that in the case of independent and identically distributed random vectors (X-i, Y-i) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X, Y). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y) = \y\ the conditional M-functional coincides with the L-1-functional and with the conditional median. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [21] Distribution-free strong consistency for nonparametric kernel regression involving nonlinear time series
    Lu, ZD
    Cheng, P
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 65 (01) : 67 - 86
  • [22] Distribution-free strong consistency for nonparametric kernel regression involving nonlinear time series
    Lu, Z.
    Cheng, P.
    Journal of Statistical Planning and Inference, 65 (01):
  • [23] Sparse M-estimators in semi-parametric copula models
    Fermanian, Jean-David
    Poignard, Benjamin
    BERNOULLI, 2024, 30 (03) : 2475 - 2500
  • [24] Embedded non-parametric kernel learning for kernel clustering
    Liu, Mingming
    Liu, Bing
    Zhang, Chen
    Sun, Wei
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (04) : 1697 - 1715
  • [25] Embedded non-parametric kernel learning for kernel clustering
    Mingming Liu
    Bing Liu
    Chen Zhang
    Wei Sun
    Multidimensional Systems and Signal Processing, 2017, 28 : 1697 - 1715
  • [26] Convergence of the optimal M-estimator over a parametric family of M-estimators
    Miguel A. Arcones
    Test, 2005, 14 : 281 - 315
  • [27] Convergence of the optimal m-estimator over a parametric family of m-estimators
    Arcones, MA
    TEST, 2005, 14 (01) : 281 - 315
  • [28] On the consistency of non-parametric estimation of the spatial spectrum
    Ephraty, A
    Tabrikian, J
    Messer, H
    NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 247 - 250
  • [29] A robust parametric method for power harmonic estimation based on M-Estimators
    Cai Tao
    Duan Shanxu
    Ren Ting
    Liu Fangrui
    MEASUREMENT, 2010, 43 (01) : 67 - 77
  • [30] A new kernel distribution function estimator based on a non-parametric transformation of the data
    Swanepoel, JWH
    Van Graan, FC
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 551 - 562