Molecular interpretation of the non-Newtonian viscoelastic behavior of liquid water at high frequencies

被引:17
|
作者
Schulz, Julius C. F. [1 ]
Schlaich, Alexander [1 ,2 ]
Heyden, Matthias [3 ,4 ]
Netz, Roland R. [1 ]
Kappler, Julian [1 ,5 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[2] Univ Grenoble Alpes, LIPhy, CNRS, F-38000 Grenoble, France
[3] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[4] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA
[5] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
来源
PHYSICAL REVIEW FLUIDS | 2020年 / 5卷 / 10期
基金
欧洲研究理事会;
关键词
SHEAR VISCOSITY; DYNAMICS; MODEL; INTERFACES; SPECTRUM; TIME;
D O I
10.1103/PhysRevFluids.5.103301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using classical as well as ab initio molecular dynamics simulations, we calculate the frequency-dependent shear viscosity of pure water and water-glycerol mixtures. In agreement with recent experiments, we find deviations from Newtonian-fluid behavior in the THz regime. Based on an extension of the Maxwell model, we introduce a viscoelastic model to describe the observed viscosity spectrum of pure water. We find four relaxation modes in the spectrum which we attribute to (i) hydrogen-bond network topology changes, (ii) hydrogen-bond stretch vibrations of water pairs, (iii) collective vibrations of water molecule triplets, and (iv) librational excitations of individual water molecules. Our model quantitatively describes the viscoelastic response of liquid water on short timescales, where the hydrodynamic description via a Newtonian-fluid model breaks down.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] NON-NEWTONIAN BEHAVIOR OF FLOCCULATED SUSPENSIONS
    MILLS, P
    JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (07): : L301 - L309
  • [42] NON-NEWTONIAN BEHAVIOR IN ELASTOHYDRODYNAMIC LUBRICATION
    HIRST, W
    MOORE, AJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 337 (1608): : 101 - 121
  • [43] NON-NEWTONIAN BEHAVIOR OF YEAST SUSPENSIONS
    ELTEMTAMY, S
    FARAHAT, L
    ELDIN, AN
    GABER, A
    EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1982, 15 (03): : 156 - 160
  • [44] NON-NEWTONIAN BEHAVIOR OF SOLUTIONS OF MACROMOLECULES
    GOLDBERG, P
    FUOSS, RM
    JOURNAL OF PHYSICAL CHEMISTRY, 1954, 58 (08): : 648 - 653
  • [45] NON-NEWTONIAN MOLECULAR-DYNAMICS
    EVANS, DJ
    MORRISS, GP
    COMPUTER PHYSICS REPORTS, 1984, 1 (06): : 297 - 343
  • [46] Non-Newtonian viscosity of water fog
    Shavlov, A. V.
    Sokolov, I. V.
    Dzhumandzhi, V. A.
    PHYSICS LETTERS A, 2022, 450
  • [47] Non-Newtonian viscosity of water fog
    Shavlov, A.V.
    Sokolov, I.V.
    Dzhumandzhi, V.A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 450
  • [48] Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses
    Kawamura, Y
    Nakamura, T
    Kato, H
    Mano, H
    Inoue, A
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 304 (1-2): : 674 - 678
  • [49] STRUCTURAL SIMILARITY AND TRANSITION FROM NEWTONIAN TO NON-NEWTONIAN BEHAVIOR FOR CLAY-WATER SUSPENSIONS
    COUSSOT, P
    PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 3971 - 3974
  • [50] Flow Analysis for a Flow Channel Instrument to Evaluate Viscosities of Non-Newtonian Viscoelastic Liquid Foods
    Yoshida, Masanori
    Igarashi, Hitoshi
    Iwasaki, Kento
    Fuse, Sayaka
    Tsuruta, Yuko
    Shimomura, Takuya
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2017, 13 (09)