Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing

被引:71
|
作者
Han, Xiaoping [1 ,2 ,8 ]
Chen, Haide [1 ,3 ,5 ]
Huang, Daosheng [1 ,8 ]
Chen, Huidong [4 ,6 ]
Fei, Lijiang [1 ,8 ]
Cheng, Chen [7 ]
Huang, He [2 ,8 ]
Yuan, Guo-Cheng [4 ]
Guo, Guoji [1 ,2 ,3 ,8 ]
机构
[1] Zhejiang Univ, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Med, Inst Hematol, Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China
[3] Dr Li Dak Sum & Yip Yio Chin Ctr Stem Cell & Rege, Zhejiang Prov Key Lab Tissue Engn & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[4] Harvard Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Zhejiang Univ, Coll Anim Sci, Hangzhou 310058, Zhejiang, Peoples R China
[6] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[7] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China
[8] Zhejiang Univ, Stem Cell Inst, Hangzhou 310058, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
Single-cell RNA-sequencing; Primed human pluripotent stem cell; Embryoid body; Naive human pluripotent stem cell; MESSENGER-RNA; SIGNALING PATHWAYS; CULTURE-CONDITIONS; STROMAL CELLS; HUMAN ES; GENE; EXPRESSION; NAIVE; MUSCLE; MOUSE;
D O I
10.1186/s13059-018-1426-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. Results: We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naive-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naive-like H9. Functionally, naive-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Conclusions: Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Ranking of cell clusters in a single-cell RNA-sequencing analysis framework using prior knowledge
    Oulas, Anastasis
    Savva, Kyriaki
    Karathanasis, Nestoras
    Spyrou, George M.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [42] Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    Hyun Min Kang
    Meena Subramaniam
    Sasha Targ
    Michelle Nguyen
    Lenka Maliskova
    Elizabeth McCarthy
    Eunice Wan
    Simon Wong
    Lauren Byrnes
    Cristina M Lanata
    Rachel E Gate
    Sara Mostafavi
    Alexander Marson
    Noah Zaitlen
    Lindsey A Criswell
    Chun Jimmie Ye
    Nature Biotechnology, 2018, 36 : 89 - 94
  • [43] A single-cell RNA-sequencing training and analysis suite using the Galaxy framework
    Tekman, Mehmet
    Batut, Berenice
    Ostrovsky, Alexander
    Antoniewski, Christophe
    Clements, Dave
    Ramirez, Fidel
    Etherington, Graham J.
    Hotz, Hans-Rudolf
    Scholtalbers, Jelle
    Manning, Jonathan R.
    Bellenger, Lea
    Doyle, Maria A.
    Heydarian, Mohammad
    Huang, Ni
    Soranzo, Nicola
    Moreno, Pablo
    Mautner, Stefan
    Papatheodorou, Irene
    Nekrutenko, Anton
    Taylor, James
    Blankenberg, Daniel
    Backofen, Rolf
    Gruening, Bjoern
    GIGASCIENCE, 2020, 9 (10):
  • [44] Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    Kang, Hyun Min
    Subramaniam, Meena
    Targ, Sasha
    Michelle Nguyen
    Maliskova, Lenka
    McCarthy, Elizabeth
    Wan, Eunice
    Wong, Simon
    Byrnes, Lauren
    Lanata, Cristina M.
    Gate, Rachel E.
    Mostafavi, Sara
    Marson, Alexander
    Zaitlen, Noah
    Criswell, Lindsey A.
    Ye, Chun Jimmie
    NATURE BIOTECHNOLOGY, 2018, 36 (01) : 89 - +
  • [45] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [46] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Yun Zhang
    Brian Aevermann
    Rohan Gala
    Richard H. Scheuermann
    Scientific Reports, 12 (1)
  • [47] A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA
    Liu, Yiyi
    Warren, Joshua L.
    Zhao, Hongyu
    ANNALS OF APPLIED STATISTICS, 2019, 13 (03): : 1733 - 1752
  • [48] Significance analysis for clustering with single-cell RNA-sequencing data
    Grabski, Isabella N.
    Street, Kelly
    Irizarry, Rafael A.
    NATURE METHODS, 2023, 20 (08) : 1196 - +
  • [49] A systematic evaluation of single-cell RNA-sequencing imputation methods
    Hou, Wenpin
    Ji, Zhicheng
    Ji, Hongkai
    Hicks, Stephanie C.
    GENOME BIOLOGY, 2020, 21 (01)
  • [50] A systematic evaluation of single-cell RNA-sequencing imputation methods
    Wenpin Hou
    Zhicheng Ji
    Hongkai Ji
    Stephanie C. Hicks
    Genome Biology, 21