An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life

被引:115
|
作者
Yu, Hongfa [1 ]
Ma, Haoxia [1 ,2 ]
Yan, Kun [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Civil Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Civil Engn, Jincheng Coll, Nanjing 211156, Jiangsu, Peoples R China
[3] Nanjing Gardens Planning & Design Inst Ltd, Nanjing 210013, Jiangsu, Peoples R China
关键词
Concrete; Equation for determining freeze-thaw; fatigue damage; Model for predicting the service life; subjected to freeze-thaw cycles; Cooling rate; Freezing temperature;
D O I
10.1016/j.conbuildmat.2017.01.042
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The present study uses the dynamic modulus of elasticity as the damage variable and derives an equation that can be used to determine the freeze-thaw fatigue damage in concrete under water and deicing salt freeze-thaw conditions based on the mechanical fatigue damage theory. The present study derives a model for predicting the service life of concrete subjected to freeze-thaw cycles under different freeze-thaw systems. Accumulative model is also presented for predicting the service life of concrete subjected to freeze thaw cycles under a combination of different freeze-thaw systems in natural environmental conditions; this model uses the fatigue damage accumulation theory along with the fact that the mechanism of freeze-thaw damage in concrete is the same in the natural freeze-thaw environment as it is under standard laboratory rapid freeze-thaw conditions. The equation for determining the freeze-thaw fatigue damage in concrete and the model for predicting the service life of concrete subjected to freeze-thaw cycles are verified based on a large amount of test data. The relationship between the number of freeze-thaw cycles concrete undergoes under laboratory condition and natural environmental conditions is recalculated. In addition, applying the cumulative model for predicting the service life of concrete subjected to freeze thaw cycles under natural environmental conditions is discussed. The results show that the curves of the freeze-thaw fatigue damage for different types of concrete obtained from the proposed equation have the same trends and are in good agreement with the curve of the measured relative dynamic modulus of elasticity. Furthermore, the relative errors between the values calculated from the model for predicting the service life of concrete subjected to freeze-thaw cycles and the values measured under different cooling rates are less than 3%; this result indicates that the model for predicting the service life of concrete subjected to freeze-thaw cycles and its cumulative model can satisfactorily predict the natural fatigue life of concrete subjected to freeze-thaw cycles in an actual freeze-thaw environment. The analysis and calculation of the measured laboratory condition and natural environmental conditions data shows that the ratio of the standard fatigue life of concrete subjected to freeze-thaw cycles under rapid laboratory freeze-thaw conditions to the natural fatigue life of the same concrete subjected to freeze-thaw cycles in the actual environment is approximately 1:8-1:9, instead of the previously reported range of 1:10-1:15. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [31] Mathematical Model for Freeze-Thaw Durability of Concrete
    Bažant, ZdenĚk P.
    Chern, Jenn-Chuan
    Rosenberg, Arnold M.
    Gaidis, James M.
    Journal of the American Ceramic Society, 1988, 71 (09): : 776 - 783
  • [32] Research progress on freeze-thaw constitutive model of concrete based on damage mechanics
    Liu, Zimei
    Ge, Xueliang
    Lu, Cairong
    Zhang, Zhengnan
    Duan, Yuwei
    Xu, Haiyan
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2024, 31 (01)
  • [33] Damage constitutive model of coal gangue concrete under freeze-thaw cycles
    Qiu, Jisheng
    Zhou, Yunxian
    Vatin, Nikolay Ivanovich
    Guan, Xiao
    Sultanov, Shukhrat
    Khemarak, Khon
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 264
  • [34] Study of Damage Mechanism and Evolution Model of Concrete under Freeze-Thaw Cycles
    Zhao, Ning
    Lian, Shuailong
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [35] Damage Constitutive Model of Fly Ash Concrete under Freeze-Thaw Cycles
    Liu, Ming-hui
    Wang, Yuan-feng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2012, 24 (09) : 1165 - 1174
  • [36] Freeze-thaw Damage Model and Deterioration Mechanism of Coal Gangue Powder Concrete
    Guan, Xiao
    Long, Hang
    Ding, Sha
    Zhang, Pengxin
    Cailiao Daobao/Materials Reports, 2024, 38 (16):
  • [37] Evaluation of freeze-thaw damage on concrete material and prestressed concrete specimens
    Qin, Xiao-chuan
    Meng, Shao-ping
    Cao, Da-fu
    Tu, Yong-ming
    Sabourova, Natalia
    Grip, Niklas
    Ohlsson, Ulf
    Blanksvard, Thomas
    Sas, Gabriel
    Elfgren, Lennart
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 125 : 892 - 904
  • [38] Fatigue test of reinforced concrete with the coupling of freeze-thaw and corrosion
    Lu, Mingshi
    Li, Xiaoming
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 114 - 114
  • [39] Damage characteristics and constitutive model of concrete under uniaxial compression after Freeze-Thaw damage
    Li, Yanlong
    Guo, Hanyu
    Zhou, Heng
    Li, Yang
    Chen, Junhao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 345
  • [40] Microstructural damage characterization of concrete under freeze-thaw action
    Luo, Q.
    Liu, D. X.
    Qiao, Pizhong
    Feng, Q. G.
    Sun, L. Z.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (10) : 1551 - 1568