Single-Mode to 61 Spots Divider With Multimode Interference in Hexagonal Core Fiber

被引:2
|
作者
Zhang, Ziyang [1 ]
Fiebrandt, Julia [1 ,2 ]
Haynes, Dionne [1 ]
Wang, Yu [1 ]
Sun, Kai [1 ]
Madhav, Kalaga [1 ]
Roth, Martin M. [1 ]
机构
[1] Leibniz Inst Astrophys Potsdam, innoFSPEC, D-14482 Potsdam, Germany
[2] PicoQuant GmbH, D-12489 Berlin, Germany
关键词
Multimode interference device; hexagonal core fiber; multicore fiber; PHOTONIC LANTERNS;
D O I
10.1109/LPT.2018.2847233
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multimode interference devices using a segment of hexagonal core fiber have been studied numerically and verified experimentally. The devices are capable of transforming light propagation from a standard single-mode fiber to an array of localized self-focusing spots on a hexagonal lattice. Depending on the length of the chosen hexagonal core fiber, the self-focusing pattern can either exhibit a 5-layer matrix with 61 spots or 4-layer one with 37 spots. As 1-to-61 power divider, the optical loss of 2.13 dB and imbalance of 1.25 dB are obtained from the registered power on an infrared camera. Numerical studies have shown that the device can be used as a power splitter from a single-mode fiber to a 61-core-or 37-core-hexagonally packed multicore fiber.
引用
收藏
页码:1337 / 1340
页数:4
相关论文
共 50 条
  • [21] Fiber amplifiers - Coiling boosts single-mode power in multimode fiber
    Jones-Bey, H
    LASER FOCUS WORLD, 2000, 36 (08): : 58 - +
  • [22] Expanded single-mode fiber using graded index multimode fiber
    Chanclou, P
    Kaczmarek, C
    Mouzer, G
    Gravey, P
    Thual, M
    Lecollinet, MA
    Rochard, P
    OPTICAL ENGINEERING, 2004, 43 (07) : 1634 - 1642
  • [23] Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study
    Del Villar, Ignacio
    Socorro, Abian B.
    Hernaez, Miguel
    Corres, Jesus M.
    Zamarreno, Carlos R.
    Sanchez, Pedro
    Arregui, Francisco J.
    Matias, Ignacio R.
    JOURNAL OF SENSORS, 2015, 2015
  • [24] Reflectometric Measurement of Temperature Using a Single-Mode–Multimode–Single-Mode Fiber-Optic Structure
    A. Yu. Igumenov
    I. V. Mel’nikov
    A. A. Afanas’ev
    S. S. Popova
    S. N. Lukinykh
    I. A. Tambasov
    Technical Physics Letters, 2022, 48 : 227 - 229
  • [25] Low-loss rotated porous core hexagonal single-mode fiber in THz regime
    Islam, Raonaqul
    Hasanuzzaman, G. K. M.
    Habib, Md. Selim
    Rana, Sohel
    Khan, M. A. G.
    OPTICAL FIBER TECHNOLOGY, 2015, 24 : 38 - 43
  • [26] Alcohol Sensor based on Single-Mode -Multimode-Single-Mode Fiber Structure
    Yulias, Mefina R.
    Hatta, A. M.
    Sekartedjo
    SECOND INTERNATIONAL SEMINAR ON PHOTONICS, OPTICS, AND ITS APPLICATIONS (ISPHOA 2016), 2016, 10150
  • [27] Performance Evaluation of Single-mode and Multimode Fiber in LAN Environment
    Rahman, Farah Diyana Abdul
    Al-Khateeb, Wajdi
    Hashim, Aisha Hassan Abdalla
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 6, 2005, : 257 - 259
  • [28] Single-mode and multimode Fabry-Perot interference in suspended graphene
    Oksanen, Mika
    Uppstu, Andreas
    Laitinen, Antti
    Cox, Daniel J.
    Craciun, Monica F.
    Russo, Saverio
    Harju, Ari
    Hakonen, Pertti
    PHYSICAL REVIEW B, 2014, 89 (12)
  • [29] High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing
    Fukano, Hideki
    Aiga, Tomohiro
    Taue, Shuji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (04)
  • [30] Signal beating elimination using single-mode fiber to multimode fiber coupling
    Fok, Mable P.
    Deng, Yanhua
    Kravtsov, Konstantin
    Prucnal, Paul R.
    OPTICS LETTERS, 2011, 36 (23) : 4578 - 4580