A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms

被引:14
|
作者
Becker, Heiko [1 ]
Blanchette, Jasmin Christian [2 ,3 ,4 ]
Waldmann, Uwe [4 ]
Wand, Daniel [4 ,5 ]
机构
[1] Max Planck Inst Softwaresyst, Saarbrucken, Germany
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
[3] Inria Nancy Grand Est, Villers Les Nancy, France
[4] Max Planck Inst Informat, Saarbrucken, Germany
[5] Tech Univ Munich, Munich, Germany
来源
AUTOMATED DEDUCTION - CADE 26 | 2017年 / 10395卷
基金
欧洲研究理事会;
关键词
TERMINATION; PATH; LOGIC;
D O I
10.1007/978-3-319-63046-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We generalize the Knuth-Bendix order (KBO) to higher-order terms without lambda-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus.
引用
收藏
页码:432 / 453
页数:22
相关论文
共 50 条